Asphyxiating thoracic dystrophy (ATD), or Jeune syndrome, is an autosomal recessive multisystem developmental disorder, characterised by abnormal skeletal development, with typical radiographical findings (fig 1) that include a long, narrow, “bell shaped” thorax with short, abnormal ribs, metaphyseal irregularities, and short long bones (involving predominately the ulnae, radii, fibulae, and tibiae). Clavicles can be abnormal (”bicycle handlebar shaped”) and cone shaped epiphyses of the hands and abnormalities of the pelvis are considered to be diagnostic. Features of the latter, in the neonatal period, comprise small ilia and irregularity of the acetabulum (“trident shaped”), from which a medial and lateral bony projection is visible. Renal, hepatic, pancreatic, and retinal abnormalities are common features of ATD and polydactyly of both hands and/or feet has been reported.

ATD shows wide phenotypic variability and cases have been classified into lethal, severe, mild, and latent forms. Most patients are severely affected and die from asphyxia caused by a small thorax and hypoplastic lungs, in the perinatal period. However, approximately one-fifth of children with ATD survive beyond the neonatal period, only to develop significant renal impairment, with cystic changes and periglomerular fibrosis leading to chronic renal failure. Liver involvement may be severe and biliary cirrhosis can cause early morbidity. While ophthalmological involvement is not a presenting symptom, retinal dystrophy is an occasional feature. The molecular basis of ATD is at present unknown, with few clues to the location of genes likely to contribute to pathogenesis. A similar phenotype occurs in Ellis-van Creveld syndrome (EVC, MIM 225500), and has been reported in one case with a de novo deletion of chromosome 12p11-p12. A mouse model of ATD has been proposed, known as the shorty (srt) mutant, identified through a screen of recessive developmental mutations. The human chromosomal regions syntenic to the srt locus are chromosome 6p21, 6q25-27, and 16p13.3.
been published elsewhere (case 3 in Lebrune no evidence of liver disease. Full details of proband E have at the time of the study, and have normal renal function and

Probands A and D were aged 36 and 30 months, respectively, trimester.

ing an ultrasound diagnosis of ATD during the second therapeutic termination of pregnancy was performed follow-

spurs) in all cases (fig 1). In the case of proband B, a acetubular roofs were horizontal, with medial and lateral

dromes and a neonatal skeletal survey showed typical features of ATD (short horizontal ribs, with small narrow thoraces; acetabular roofs were horizontal, with medial and lateral spurs) in all cases (fig 1) in the case of proband B, a therapeutic termination of pregnancy was performed following an ultrasound diagnosis of ATD during the second trimester.

affected fetus C was stillborn at 30 weeks.

In the first instance we investigated whether ATD was linked to previously suggested candidate regions (the EVC gene, 12p11-p12, and 6p21, 6q25-27, and 16p13.3 that are syntenic to the 7 cM interval on mouse chromosome 17 to which srt has been mapped). Analysis of haplotypes in families A-D excluded linkage to all of these regions (data not shown). The Pakistani probands A and C were homozygous for the same allele at D15S822 and D15S659, whereas B and C were identical at D15S1031 (fig 2). A

RESULTS

The data from the original genome wide linkage search showed extended regions of homozygosity in probands A (29 cM from D15S128 to GATA50C03) and B (54 cM, D15S128 to D15S1507) (fig 2, markers shown in bold). No other regions of homozygosity, that were common to the four probands A to D, were found in the genome wide linkage search. These subjects were homozygous for the same allele at D15S822 and D15S1507. The Italian proband, D, was homozygous at GATA50C03 and D15S659. This suggested that the gene for ATD was located between D15S822 and D15S1507, an interval of 31 cM, on chromosome 15q13. To fine map this interval, we genotyped an additional seven microsatellite markers in all four affected probands (A to D) and their parents, as well as proband E and his mother.

The data from the original genome wide linkage search showed extended regions of homozygosity in probands A (29 cM from D15S128 to GATA50C03) and B (54 cM, D15S128 to D15S1507) (fig 2, markers shown in bold). No other regions of homozygosity, that were common to the four probands A to D, were found in the genome wide linkage search. These subjects were homozygous for the same allele at D15S822 and D15S1507. The Italian proband, D, was homozygous at GATA50C03 and D15S659. This suggested that the gene for ATD was located between D15S822 and D15S659, an interval of 31 cM, on chromosome 15q13. To fine map this interval, we genotyped an additional seven microsatellite markers in all four affected probands (A to D) and their parents, as well as proband E and his mother (fig 2, markers shown in plain text). DNA was not available from the parents of proband B or the father of proband E. Suitable markers were identified from the Marshfield mapping panels15 (Marshfield Medical Research Foundation; http://research.marshfieldclinic.org/genetics/Map_Markers/) and their physical and genetic locations determined from both the Ensembl Genome Browser database (http://www.ensembl.org/Homo_sapiens/) and the deCODE Genetics high resolution genetic map.16 The order and distance between these markers was based on the deCODE map. The five probands were homozygous for markers D15S976, D15S1013, and D15S1031. The Pakistani probands A and C were homozygous for the same alleles at marker D15S1013, whereas B and C were identical at D15S1031 (fig 2). A common 1.2 cM region of homozygosity between markers
ATD maps to 15p13

Radiographic and clinical features of probands A to H

Table 1

<table>
<thead>
<tr>
<th>Proband</th>
<th>Country of origin</th>
<th>Sex</th>
<th>Age (months)</th>
<th>Birth weight (g)</th>
<th>Skeletal features</th>
<th>Cardiac features</th>
<th>Renal function</th>
<th>Ophthalmological findings</th>
<th>Other findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pakistan</td>
<td>Male</td>
<td>39</td>
<td>1965 (at 34/40)</td>
<td>+/+</td>
<td>+/− hypoplastic right thorax; left side only mildly affected</td>
<td>Normal</td>
<td>+/− macular degeneration</td>
<td>Handlebar shaped clavicles</td>
</tr>
<tr>
<td>B</td>
<td>Pakistan</td>
<td>Female</td>
<td>21</td>
<td>643</td>
<td>−/−</td>
<td>+/− mild hypoplasia of humeri & femora</td>
<td>Normal</td>
<td>Normal</td>
<td>Hypoplastic middlephalanges of hands</td>
</tr>
<tr>
<td>C</td>
<td>Pakistan</td>
<td>Male</td>
<td>40</td>
<td>242</td>
<td>+/−</td>
<td>+/−</td>
<td>Normal</td>
<td>Normal</td>
<td>Cone shaped epiphyses of phalanges</td>
</tr>
<tr>
<td>D</td>
<td>Italy</td>
<td>Male</td>
<td>55</td>
<td>2490</td>
<td>+/−</td>
<td>+/−</td>
<td>Normal</td>
<td>Normal</td>
<td>Short middlephalanges</td>
</tr>
<tr>
<td>E</td>
<td>France</td>
<td>Male</td>
<td>22</td>
<td>3310</td>
<td>+/−</td>
<td>+/−</td>
<td>Normal</td>
<td>Normal</td>
<td>Short middlephalanges</td>
</tr>
<tr>
<td>F</td>
<td>Italy</td>
<td>Male</td>
<td>40</td>
<td>3560</td>
<td>+/−</td>
<td>+/−</td>
<td>Normal</td>
<td>Normal</td>
<td>Cone shaped epiphyses of phalanges</td>
</tr>
<tr>
<td>G</td>
<td>Italy</td>
<td>Male</td>
<td>32</td>
<td>3150</td>
<td>+/−</td>
<td>+/−</td>
<td>Normal</td>
<td>Normal</td>
<td>Cone shaped epiphyses of phalanges</td>
</tr>
<tr>
<td>H</td>
<td>Belgium</td>
<td>Female</td>
<td>51</td>
<td>3200</td>
<td>+/−</td>
<td>+/−</td>
<td>Normal</td>
<td>Normal</td>
<td>Cone shaped epiphyses of phalanges</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Marker</th>
<th>Load score at θ=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>D15S1048</td>
<td>1.561</td>
</tr>
<tr>
<td>D15S165</td>
<td>0.938</td>
</tr>
<tr>
<td>D15S976</td>
<td>0.433</td>
</tr>
<tr>
<td>D15S1013</td>
<td>2.963</td>
</tr>
<tr>
<td>D15S1031</td>
<td>3.774</td>
</tr>
<tr>
<td>D15S1010</td>
<td>2.819</td>
</tr>
<tr>
<td>D15S231</td>
<td>−0.464</td>
</tr>
</tbody>
</table>

D15S165 and D15S1010 was detected in all five probands. A maximum cumulative two point lod score was detected at D15S1031 (Zmax=3.77 at θ=0.00) (table 2).

DISCUSSION

In certain recessive disorders, the identification of the disease gene has been expedited by the detection of allelic homozygosity in apparently non-consanguineous families. Thus in the search for NPHP4, homozygosity within the critical interval was detected in affected subjects from a family initially thought to be non-consanguineous, but in which distant consanguinity was eventually shown. To determine whether such an approach might be useful in localising the ATD gene on chromosome 15q13, we ascertained three additional non-consanguineous European families with ATD (families F to H, fig 2). Families F and G originated from southern Italy. There is anecdotal evidence of distant consanguinity in family F, and both grandmothers of the proband originate from the same village in southern Italy (M Silengo, personal communication). Proband F had severe respiratory distress at birth, which eventually required tracheostomy, because of an extremely hypoplastic, short thorax. At the age of 53 months there is no evidence of renal disease. Proband G was noted to have postaxial polydactyly of both hands and feet. Skeletal x rays for both probands F and G were diagnostic for ATD, showing shortening of the long bones and typical acenbitar spas (M Silengo, personal communication). Proband H also had a typical ATD phenotype and the family originates from Belgium. The affected child appeared to have a mild form of ATD, with typical features that include bilateral postaxial polydactyly, but presented with retinal dystrophy at the age of 5½ years. There was no evidence of renal or liver disease. Clinical and radiographic findings for probands F to H are summarised in table 1.

Families F to H were genotyped for the 14 microsatellite markers from the chromosome 15q interval that defined the haplotypes of families A to E (fig 3). Although the parents in families F to H are not known to be related, the haplotypes of the affected children contain small regions of homozygosity within the D15S165 to D15S1010 interval. The unaffected sib of proband F was heterozygous throughout this interval. Homozygosity in the affected children contain small regions of homozygosity within the D15S165 to D15S1010 interval. The unaffected sib of proband F was heterozygous throughout this interval. They may arise from distant consanguinity in these families. Probands D to H all share identical homozygous alleles at markers D15S1013 and D15S231 (fig 3), although the heterozygosity h of these markers is 0.53 and 0.50, respectively. Marker D15S976 (h=0.63) shares alleles for probands D, F, G, and H, D15S1010 (h=0.80) has identical homozygous alleles for D and E and different but homozygous alleles for G and H. These data support the previous conclusion that the ATD locus maps within a 1.2 cM interval from D15S165 to D15S1010, and may reduce the candidate interval to between D15S165 and D15S1031. Although homozygosity could also indicate that alleles for the
thought to be a morphoregulatory gene that regulates noggin of the proteins encoded by the pattern-inducing genes hedgehog (SHH) during outgrowth and patterning of the vertebrate limb. It encodes a protein that is a regulator during early development and is therefore represented an excellent candidate gene, since it...
counselling, carrier testing, and prenatal diagnosis. Interestingly, both severe and mild forms of ATD mapped to 15q13, suggesting that phenotypic variation in ATD reflects allelic heterogeneity and not locus heterogeneity. Identification of the ATD gene(s) may provide important molecular insights into fundamental developmental pathways.

ACKNOWLEDGEMENTS

The authors thank the families for their participation in this study, which was supported by the Welcome Trust (UK Autozygosity Mapping Consortium: ERM, RCT), an Endowment Fund from Birmingham Children’s Hospital Liver Unit (PG, CAJ), and a start up grant which was supported by the Wellcome Trust (UK Autozygosity Mapping). The authors thank the families for their participation in this study, including GBF and MS are supported by grants from Compagnia di San Paolo, Genet. The authors thank the families for their participation in this study, including GBF and MS are supported by grants from Compagnia di San Paolo, Genet. The authors thank the families for their participation in this study, including GBF and MS are supported by grants from Compagnia di San Paolo, Genet.

REFERENCES

N M Morgan, P Gissen, E R Maher, C A Johnson, Section of Medical and Molecular Genetics, Department of Paediatrics and Child Health, University of Birmingham Medical School, Birmingham B15 2TJ, UK C Baccelli, P J Scambler, F R Goodman, Molecular Medicine Unit, Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK P Gissen, D A Kelly, Children’s Liver Unit, Princess of Wales Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK J Morton, West Midlands Regional Clinical Genetics Service, Birmingham Women’s Hospital, Birmingham, B15 2TG, UK G B Ferrero, M Silengo, Dipartimento di Scienze Pediatriche e dell’Adolescenza, Università degli Studi di Torino, Piazza Polonia 94, 10126 Torino, Italy P Labrune, Service de Pédiatrie, Hôpital Antoine-Béclère, 157 Rue de la Porte-de-Trivaux BP 405, 92141 Clamart, France I Costeels, Department of Paediatric Ophthalmology, St Raphael University Hospital, Capucijnenvoer 33, 3000 Leuven, Belgium C Hall, Department of Radiology, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London WC1N 3JH, UK P Cox, Department of Pathology, Birmingham Women’s Hospital, Birmingham B15 2TG, UK R C Trembath, Division of Medical Genetics, Departments of Medicine and Genetics, University of Leicester, Leicester LE1 7RH, UK

Correspondence to: Dr C A Johnson, Section of Medical and Molecular Genetics, Department of Paediatrics and Child Health, University of Birmingham Medical School, Birmingham B15 2TJ, UK, c.a.johnson@bham.ac.uk

Revised version received 1 March 2003 Accepted for publication 3 March 2003

REFERENCES