Several autosomal dominantly inherited human syndromes have recently been shown to result from mutations in the p63 gene. These syndromes have various combinations of limb malformations fitting the split hand-split foot spectrum, orofacial clefting, and ectodermal dysplasia. The p63 syndrome family includes the EEC syndrome, AEC syndrome, ADULT syndrome, limb-mammary syndrome, and non-syndromic split hand/foot malformation. The pattern of heterozygous mutations is distinct for each of these syndromes. The functional effects on the p63 proteins also vary between syndromes. In all of these syndromes, the mutation appears to have both dominant negative and gain of function effects rather than causing a simple loss of function.

EEC SYNDROME

The EEC syndrome (MIM 129900) is characterised by the triad of ectrodactyly, ectodermal dysplasia, and facial clefting. A number of associated anomalies are frequently found, among which are lacrimal tract anomalies, urogenital anomalies, and conductive hearing loss. The EEC syndrome is relatively common with over 200 cases published. It is well known for having both variable expressivity and reduced penetrance. A comparison of interfamilial and intrafamilial variability in expressivity found significantly larger interfamilial variability, suggesting that more than one gene or allele might be involved.

p63 mutations in EEC syndrome

p63 gene mutations account for most and possibly all cases of classical EEC syndrome (fig 1). An extended analysis of EEC syndrome patients showed heterozygous mutations in 40 of 43 unrelated families. This indicates that p63 is the major if not the only gene mutated in EEC syndrome. All but one of these mutations give rise to amino acid substitutions in the DNA binding domain common to all known p63 isoforms. The arginine codons 204, 227, 279, 280, and 304 are most frequently mutated. Mutations involving just these five amino acids account for 75% of all EEC syndrome cases. A single frameshift mutation was detected in exon 13 in a patient with EEC syndrome characterised by cleft lip and palate, ectodermal dysplasia, split hand-split foot malformation, and mammary gland aplasia. Although the phenotype of this patient most closely resembles EEC syndrome, the mammary gland aplasia would also be consistent with a diagnosis of limb-mammary syndrome (LMS). Interestingly, two typical limb-mammary syndrome patients have also been found to have frameshift mutations affecting the C-terminal region of the gene.

Different factors may contribute to this highly specific distribution of p63 mutations in EEC syndrome. It is possible that the mutations involve nucleotides that are highly mutable. The fact that mutations commonly affect CpG sites is consistent with this notion. However, it is more likely that the restricted mutation spectrum in EEC syndrome reflects a specific pathogenetic mechanism. This possibility is supported by the finding that for each of the frequently mutated amino acids a number of different missense mutations occurred, such as R204W/Q, R279C/H/Q, R280C/H/S, and R304W/Q. All of these mutations were associated with EEC syndrome, whereas mutations affecting other domains of the p63 protein yield phenotypically distinguishable syndromes, such as AEC or LMS. This suggests that, although mutations can occur at many different sites along the p63 gene, only those affecting specific amino acids in the DNA binding domain of the molecule will yield an EEC phenotype.

The EEC syndrome community

Several syndromes have been described which share features with EEC (table 1). Some of these are now known to result from mutations of the p63 gene and are thereby allelic to classical EEC syndrome in 3q27. In others, alleleism has been excluded, and for yet others this is unknown. A large kindred has been reported in which a syndrome segregated that combines ectrodactyly with cleft palate, without cleft lip or the ectodermal features that occur with the EEC syndrome. The term ectrodactyly-cleft palate syndrome was suggested (MIM 129830).

The AEC syndrome (MIM 106260) of ankyloblepharon, ectodermal dysplasia, and clefting was originally described by Hay and Wells. It shares the ectodermal dysplasia and clefting with EEC syndrome. However, the ectodermal involvement is much more severe in AEC syndrome. Severe scalp dermatitis is common. In addition, the clefting when present in EEC syndrome is severe scalp dermatitis is common. In addition, the clefting when present in EEC syndrome is

Abbreviations: EEC, ectrodactyly, ectodermal dysplasia, facial clefting; LADD, lacrimo-auriculo-dento-digital syndrome; ADULT, acro-dermato-ungual-lacrimal-tooth syndrome; SHFM, split hand/foot malformation; AEC, ankyloblepharon, ectodermal dysplasia, and clefting; SAM, sterile alpha motif; LMS, limb-mammary syndrome; CHANDS, curly hair, ankyloblepharon, and nail dysplasia syndrome; CIPED1, cleft lip/palate, ectodermal dysplasia syndrome; AER, apical ectodermal ridge.
always cleft lip (with or without cleft palate), whereas it can be cleft palate only in AEC. Limb involvement in AEC syndrome is minimal or absent.

Popliteal pterygium syndrome (MIM 119500) may resemble AEC syndrome since it has ankyloblepharon filiforme, filiform bands between the jaws, lip pits, and cleft palate with or without cleft lip. Many patients have syndactyly. The characteristic popliteal pterygium is not present in all cases. A pathognomonic sign is a typical, triangular overgrowth of skin over the nail of the big toe. Popliteal pterygium syndrome may be allelic to van der Woude syndrome in 1q32.

The limb-mammary syndrome (MIM 603543) was originally described in a large Dutch kindred with split hand-split foot malformation (ectrodactyly) and aplasia or hypoplasia of the mammary gland and nipple. Some patients had complete absence of breast tissue (amastia). Although a number of features were shared with the EEC syndrome, the frequent mammary gland abnormalities and the fact that ectodermal involvement occurred in only a small minority of patients clearly indicated a separate syndrome. In addition, clefting occurred, but unlike EEC syndrome it was cleft palate and not cleft lip.

Another EEC-like condition (MIM 103285) was described in a single large German kindred. Features included ectrodactyly, syndactyly, fingernail and toenail dysplasia, hypoplastic breasts and nipples, intense freckling, lacrimal

Table 1 Dominantly inherited syndromes that share similarities with EEC syndrome

<table>
<thead>
<tr>
<th>Feature</th>
<th>EEC</th>
<th>SHFM</th>
<th>LMS</th>
<th>ADULT</th>
<th>AEC</th>
<th>ECP</th>
<th>Rapp-Hodgkin</th>
<th>Popliteal pterygium</th>
<th>LADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHFM</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>CLP</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>CP</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Hair</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Skin</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Teeth</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Nails</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Mammary gland</td>
<td>+/−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Lacrimal</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Ankyloblepharon</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Lip pits</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Pterygium</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Radial ray abnormality</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Abnormal ear</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Freckling</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>p63 mutation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>
duct atresia, frontal alopecia, primary hypodontia, and loss of permanent teeth. The absence of clefting in this multigenerational family, and the intense freckling were thought to set it apart from the EEC syndrome. The authors suggested the acronym ADULT syndrome for this condition to reflect acro-dermato-ungual-lacrimal-tooth involvement.

The combination of ectodermal dysplasia and clefting occurs in several other syndromes. One of these is the autosomal dominant Rapp-Hodgkin syndrome of wiry hair (pili torti or pili canaliculi), anhidrotic ectodermal dysplasia, and cleft lip and palate (MIM 129400). Because of overlapping features of EEC and Rapp-Hodgkin syndromes in a mother and child, it has been suggested that these are fundamentally the same disorder.4 This would seem to be supported by the findings of Rodini and Richieri-Costa,14 who reported on a Brazilian family with 11 affected patients over four generations. Clinical findings in different patients ranged from isolated trichodysplasia (sparse, brittle, and dry hair) to ectodermal dysplasia, cleft palate, tear duct anomaly, and minor limb anomalies.14 It has been suggested that AEC syndrome and Rapp-Hodgkin syndrome could represent the same entity.15 These authors described a child affected by ectodermal dysplasia associated with clefting, ankyloblepharon, severe scalp dermatitis, and the characteristic Rapp-Hodgkin facies.

Another dominantly inherited syndrome which shares features with EEC is the lacrino-auriculo-dento-digital (LADD) syndrome (MIM 149730). LADD syndrome has aplasia or minor limb anomalies.

Some recessively inherited syndromes share similarities with EEC syndrome, notably the Bowen-Armstrong syndrome of recessively inherited ectodermal dysplasia, and cleft lip and/or cleft palate. Some patients have congenital adhesions between the eyelids, cicatrical atrophy of the scalp, abnormal EEG, partial anodontia, genital hypoplasia, syndactyly, and delayed skeletal growth and maturation.16 This condition could be a separate syndrome or it could be the same as the CHANDS syndrome of curly hair, ankyloblepharon and nail dysplasia, which may further include alveolar synchieae (MIM 214350).17 18

Another recessively inherited syndrome consists of syndactyly, ectodermal dysplasia, and cleft lip/palate. This condition has been termed the cleft lip/palate, ectodermal dysplasia syndrome (CLPEDI1, MIM 225000) or Zlotogora-Ogur syndrome. The patients have sparse eyebrows and eyelashes, sparse, short and dry scalp hair, and hypodontia. Cleft lip/palate, syndactyly of fingers and toes, and onychodysplasia are often present. Some patients have mental retardation. CLPEDI1 was recently shown to result from mutations in the PRKL1 gene, encoding nectin-1, an immunoglobulin related transmembrane cell-cell adhesion molecule that is part of the NAP cell adhesion system.19

Specific patterns of mutation of the p63 gene in other syndromes

Mutations of the p63 gene have been found in five human malformation conditions to date (fig 2). In addition to EEC, these are the AEC or Hay-Wells syndrome,12 21 limb-mammary syndrome,22 ADULT syndrome,11 23 24 and non-syndromic split hand-split foot malformation22 (SHFM, MIM 183600). These syndromes are characterised by limb abnormalities that fit the split hand-split foot spectrum, ectodermal dysplasias affecting the hair, teeth, nails, and sweat glands, absence of the mammary glands, and a range of other malformations of the facial skeleton, the urogenital system, and the eyes. The various malformations can be largely explained by assuming that the effect of the mutation is to disrupt normal ectoderm formation or function. This is probably also true for the limb malformations which are thought to reflect interference with normal formation of the apical ectodermal ridge (AER), which is the distal most part of the growing limb during embryogenesis. Combined p63 mutation data for these syndromes indicate extensive genotype-phenotype correlations, with each of these syndromes having a distinct pattern and type of mutations.25 This suggests that each of these mutations causes
African kindreds.

hand and foot malformation were first identified in two South

still under investigation.

vation capacity to

indicate that this latter mutation confers significant transacti-

in a small French kindred with ADULT syndrome by Amiel

al

bifid uvula, those with EEC syndrome more often have cleft

mammary gland and nipple hypoplasia is a consistent feature

location of these mutations may be significant, as LMS differs

protein isotypes through the use of alternative transcription

shfm mutational spectra. This might perhaps have been

A specific perturbation of normal p63 gene function. Func-
tional data are consistent with dominant negative as well as
dominant gain or change of function defects (P Duifj, unpub-
lished data). The p63 gene encodes at least six different
protein isoforms through the use of alternative transcription
start sites and alternative splicing at the 3′ end of the gene.21

p63 gene mutations in Hay-Wells or AEC syndrome were ini-
tially detected in eight families.22 All were missense

mutations in the SAM (sterile alpha motif) domain. These
mutations are predicted to disrupt protein-protein interac-
tions of the p63 protein with as yet unknown partners. A sin-
gle family with AEC syndrome has been shown to have a
mutation that results in a splicing defect that removes exon 11
and affects the C-terminus of both the alpha and beta isoatypes
of p63 (J Murray, personal communication). In vitro analysis
of the functional effects of the mutations in the AEC patients
indicated that such mutations have complex gain of function
as well as loss and change of function effects.23

Initially, no p63 mutations were detected in the large Dutch
LMS family that first linked this class of diseases to the p63
locus.14 However, two isolated, unrelated patients with an LMS
phenotype were found to have frameshift mutations in exon
13 that resulted in truncations of the p63 protein.15 The
location of these mutations may be significant, as LMS differs
from other EEC syndrome in at least three respects. The first is
that mammary gland and nipple hypoplasia is a consistent feature
of LMS and is only occasionally seen in EEC syndrome.
The second is that LMS patients do not have hair and skin defects.
The third is that whereas LMS patients have cleft palate or
bifid uvula, those with EEC syndrome more often have cleft
lip. Very recently the mutation in the original LMS kindred14
was found to reside in the N-terminal part of the gene, in exon
4 (P Duifj et al, unpublished data). This mutation differs from
that in the two other LMS kindreds, but is also clearly differ-
ent from the mutations seen in EEC syndrome.

ADULT (acro-dermato-ungual-lacrimal-tooth) syndrome
differs from EEC syndrome by the absence of facial clefting.
Instead, these patients show neurodermal signs, including
exfoliative dermatitis of the digits and excessive freckling.11
Linkage studies in this large German family indicated allelism
with EEC syndrome in 3q27.22 A p63 gene mutation was found
in a small French kindred with ADULT syndrome by Amiel et
al.23 This mutation is clearly different from the p63 gene
mutations in EEC. The mutation is localised in exon 3′, which
is included only in the TA isoatypes of p63 and causes an amino
acid substitution (N6H) outside the DNA binding domain.22
Another ADULT syndrome mutation involving arginine 298
has now been found in the German kindred originally
described by Propping and Zerres.24 Transactivation studies
indicate that this latter mutation confers significant transacti-
vation capacity to AN-p63gamma, which is otherwise inert in
these assays.25 This unusual result raises that possibility that
the ADULT syndrome mutation confers a novel gain of
function to p63, although the precise molecular mechanism
is still under investigation.

p63 gene mutations associated with non-syndromic split
hand malformation were first identified in two South
African kindreds.25 Subsequent analysis of a larger group of 45
unrelated SHFM patients indicated that four out of 45 had a
p63 mutation, suggesting that p63 mutations probably account
for no more than 10% of non-syndromic SHFM.26 Four of the
six p63 mutations detected in SHFM patients are not found in
other syndromes: missense mutations K193E and K194E,
splice site mutation IVS4-2A>C, and nonsense mutation
Q634X. Two other mutations, R280C and R280H, both involv-
ing codon 280, have been found in SHFM as well as in EEC
syndrome. Thus, there is partial overlap between the EEC and
SHFM mutational spectra. This might perhaps have been
expected from the considerable phenotypic variability that can
be seen within and between EEC syndrome families. If this
were the explanation, then some of the affected subjects in
these kindreds should have shown mild EEC features. This
does not seem to be the case. The two large South African
SHFM families described by Ianakiev et al25 were carefully
examined for signs of ectodermal dysplasia and none was
found. Since these families are quite large, the fact that all
family members with the R280H mutation had only SHFM
and none of the other signs of EEC syndrome suggests specific
modifier effects, possibly through interacting genes.

The power of genotype-phenotype correlations

The finding that p63 mutations cause at least five different
malformation conditions with a strong genotype-phenotype
correlation suggests a number of topics for future research.
First, these results validate the concept that human malfor-
mation syndromes can be grouped into syndrome families
based on clinical similarities. This concept was first articulated
for the skeletal dysplasias.26 Spranger’s classification was
based on the realisation that different skeletal dysplasias
could be grouped on the basis of radiological similarities.
The grouping together of achondroplasia, hypochondroplasia,
and thanatophoric dysplasia has been fully vindicated by mol-
ecular studies. The same is true for diastrophic dysplasia and
achondrogenesis Ib. Yet other examples are the type II
collagenopathies that range from achondrogenesis II, via
hypochondrogenesis, spondyloepiphyseal dysplasia congenita,
and Kniest dysplasia, to Stickler arthro-ophthalmopathy and
mild dominant spondyloarthropathy.27

This concept may be applicable in a more general sense. For
syndromes that are clinically similar, we should assume a
shared or at least related pathogenesis. As a case in point, one
might consider the Stickler and Marshall syndromes. For
many years their status as independent syndromes was
debated.28 Molecular studies have since shown that both
involve genes encoding component chains of type XI collagen
protein. However, there is preferential involvement of the
COL2A1 gene in Stickler syndrome and of the COL11A1 gene
in Marshall syndrome.29 This not only illustrates that function-
ally related genes are involved in clinically similar syndromes,
it also shows that even relatively small phenotypic differences
may point to important differences at the molecular level. Our
finding that many phenotypes are associated with p63 gene
mutations would seem to support this notion.

Although superficially similar to EEC, the presence of
pigmentary disturbances and the absence of clefting set the
ADULT syndrome apart,30 and this is now confirmed by our
recent demonstration of a specific gain of function
mechanism.31 Our recent finding that the ADULT syndrome
mutations in these families uncover a putative second
transactivation domain underlines how pertinent clinical
observations may help show aspects of a protein’s function
that would otherwise have been more difficult to detect.

Finally, the contrasting phenotypes associated with differ-
cent classes of p63 mutations shows promise for our
understanding of embryonic development in general. It is sig-
ificant in this respect that EEC mutations but not AEC
mutations cause limb involvement. Also, limb-mammary syn-
drome mutations cause mammary gland aplasia, whereas EEC
and SHFM rarely or never do. Taking these clinical differences
as leads, we can now start to assess which downstream targets
of p63 are specifically perturbed by each of these classes
of mutations. In doing so, we may be able to pinpoint some of
the developmental pathways that are specifically involved in
shaping the limbs, skin, and mammary gland during develop-
ment. Clearly, molecular genetics will provide the answers, but
only if the power of clinical genetics is exploited to pose the
right questions.

ACKNOWLEDGEMENTS

The authors are indebted to Pascal Duifj, Jacopo Celli, Ellen van
Beusekom, Kaate Vannolkot, Saskia van der Velde-Visser, and
REFERENCES

