Ectodermal dysplasias: a new clinical-genetic classification

Manuela Priolo, Carmelo Laganà

Abstract
The ectodermal dysplasias (EDs) are a large and complex nosological group of diseases, first described by Thurnam in 1848. In the last 10 years more than 170 different pathological clinical conditions have been recognized and defined as EDs, all sharing in common anomalies of the hair, teeth, nails, and sweat glands. Many are associated with anomalies in other organs and systems and, in some conditions, with mental retardation. The anomalies affecting the epidermis and epidermal appendages are extremely variable and clinical overlap is present among the majority of EDs. Most EDs are defined by particular clinical signs (for example, eyelid adhesion in AEC syndrome, ectrodactyly in EEC). To date, few causative genes have been identified for these diseases.

We recently reviewed genes known to be responsible for EDs in light of their molecular and biological function and proposed a new approach to EDs, integrating both molecular-genetic data and corresponding clinical findings. Based on our previous report, we now propose a clinical-genetic classification of EDs, expanding it to other entities in which no causative genes have been identified based on the phenotype, and speculate on possible candidate genes suggested by associated “non-ectodermal” features.

Keywords: ectodermal dysplasia; clinical-functional correlation; epithelial-mesenchymal interaction; ectodermal structural proteins

More than 170 different pathological conditions have been reported as ectodermal dysplasias, which are often associated with anomalies of other organs and systems including mental retardation. The anomalies affecting the epidermis and epidermal appendages are very variable.

Proposed classification
In light of what is currently known about the molecular basis and biological functions in EDs, we propose a new classification which is an attempt to integrate both molecular-genetic data and corresponding clinical findings. We basically propose two different groups, each likely to result from mutations in genes with similar function and possibly involved in the same mechanisms of regulation of development and/or pathogenesis (table 1).

Materials and methods
We decided only to consider those pathological conditions cited in the last revision of Pinheiro and Freire-Maia and also listed as OMIM (Online Mendelian Inheritance in Man) entries. We reviewed these conditions using ENTREZ in OMIM entries.

INCLUSION/EXCLUSION CRITERIA
We strictly limited inclusion to those conditions with primary defects in at least two of the following ectodermal derivatives: hair, teeth, nails, and sweat gland function. Disorders that were reported in a single case or by personal communication were excluded, as their validity cannot be assessed and inheritance could not be established. Similarly, we did not include syndromes that have traditionally been classified under other rubrics. For example, in cardiofaciocutaneous (CFC) syndrome, hair anomalies and ularthery ophryogenes are

Operative Unit of Medical Genetics, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Via Melacrino, 89100 Reggio Calabria, Italy M Priolo C Laganà

Correspondence to: Dr Priolo, prioloma@libero.it

www.jmedgenet.com
Table 1 Classification scheme of EDs. Italic bold entries indicate identified causative gene; Mendelian inheritance is also reported

<table>
<thead>
<tr>
<th>Group 1 (Defects in developmental regulation/epithelial-mesenchymal interaction)</th>
<th>Major ectodermal derivative involvement</th>
<th>Major skeletal involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look at TNF-like TNFRs signalling pathways/NF-κB regulation patterns if:</td>
<td>Hypohidrotic ED, X linked (MIM 305100)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Hypohidrotic ED (MIM 129490)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Hypohidrotic ED (MIM 224900)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Dermo-odontodysplasia (MIM 125640)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Hydrotic ED (Cirrhotic fascioular type) (MIM 601375)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Odonto-onycho-ungual-palmar syndrome, Mendoza-Valiente type (MIM 601957)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Amilo-onycho-hydroptic dysplasia (MIM 104570)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>BOOK syndrome (cannedia prematura) (MIM 122300)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Plori superior (twisted hair) with enamel defects (MIM 2619000)</td>
<td>AR</td>
</tr>
<tr>
<td></td>
<td>Hypodontia-nail dysgenesis “tooth-nail syndrome” (MIM 189500)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Torulodontia, absent teeth, and sparse hair (MIM 272980)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Odonto-onchyo-hydroptic dysplasia with midline scalp defects (MIM 129550)</td>
<td>AR</td>
</tr>
<tr>
<td></td>
<td>Scalp/ear/nipple syndrome (MIM 181270)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Endodermal dysplasia with nasal teeth, Turner type (MIM 601345)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Endodermal dysplasia, “pure” hair-nail type (MIM 602032)</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>ID, abnormal immune response, functional abnormalities of CNS</td>
<td>AD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 2 (Cytoskeleton maintenance and cell stability)</th>
<th>Major skeletal involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look at connexins, desmosomal plaques, proteins if:</td>
<td>Hypohidrotic keratodermia</td>
</tr>
<tr>
<td></td>
<td>Clouston disease (MIM 129590)</td>
</tr>
<tr>
<td></td>
<td>ED choroid fragility syndrome (MIM 604536)</td>
</tr>
<tr>
<td></td>
<td>Odonto-onycho-dermal-dysplasia (MIM 257980)</td>
</tr>
<tr>
<td></td>
<td>Leucocentrodentalia, infantilism, mental retardation, hypodontia, hypotrichosis (MIM 2446500)</td>
</tr>
<tr>
<td></td>
<td>Naegeli-Franceschetti-Jadassohn syndrome (MIM 161000)</td>
</tr>
<tr>
<td></td>
<td>Amilo-onchyohydroptic dysplasia (MIM 104570)</td>
</tr>
<tr>
<td></td>
<td>Plidotal dysplasia with refractive errors (MIM 262020)</td>
</tr>
<tr>
<td>Look at connexins if:</td>
<td>Deafness, and/or corneal anomalies</td>
</tr>
<tr>
<td></td>
<td>Deafness-onychodytrotrophy (MIM 601280)</td>
</tr>
<tr>
<td></td>
<td>Deafness, enamel hypoplasia, and nail defects (MIM 234580)</td>
</tr>
<tr>
<td>Look at NAP system proteins if:</td>
<td>CLPED</td>
</tr>
<tr>
<td></td>
<td>Zigo-onto-ocular-Rosselli-Guglielmanni syndrome (MIM 225000)</td>
</tr>
<tr>
<td></td>
<td>ED Margarita type syndrome (MIM 225060)</td>
</tr>
<tr>
<td>Look at PDZ proteins if:</td>
<td>Retinal degeneration</td>
</tr>
<tr>
<td></td>
<td>Oculo-onychodo-dysplasia (MIM 257960)</td>
</tr>
<tr>
<td></td>
<td>Bork syndrome (MIM 191482)</td>
</tr>
<tr>
<td></td>
<td>BEM syndrome (MIM 225280)</td>
</tr>
</tbody>
</table>

seen, but the ectodermal alterations are minor features. We did not include those pathological conditions with secondary involvement of epidermal derivatives probably resulting from a different primary defect and have classified them as “secondary EDs” (for example, Rothmund-Thomson syndrome, trichothiodystrophies, and dyskeratosis congenita.

GROUPING CRITERIA

We decided to consider first the underlying functional defect and then to try to integrate data from the clinical presentation of the related diseases. This approach is a first attempt at integration of both systems of classification and, in some ways, it may be criticised, especially when simply basing it on clinical presentation of diseases, focusing on “non-ectodermal features”, and trying to hypothesise about a possible causative gene, we arbitrarily decided to include one specific ED in one group rather than another. Nonetheless, our goal is to give both clinicians and researchers a “key” to better understanding the wide clinical variability in presentation of EDs and in dissecting “complicated” phenotypes characterised by overlap between different kinds of EDs. In the same way, we believe that this approach may help to find new candidate genes.

Group 1

The first group includes disorders in which a defect in developmental regulation and in epithelial-mesenchymal interaction can be recognised or hypothesised on the basis of an identified causative gene, its putative or proven function, and pattern of expression. There is considerable heterogeneity in clinical presentation. The EDs included may be characterised by major ectodermal derivatives involvement. X linked anhidrotic ectodermal dysplasia (X-EDA) is the most common type of ED and clinically similar EDA may be inherited as autosomal dominant or autosomal recessive conditions. They are much rarer than the X linked form. All these forms are clinically indistinguishable. An altered immune response or immunodeficiency can be observed as a
Ectodermal dysplasias: a new clinical-genetic classification

major clinical sign. Incontinentia pigmenti (IP) (MIM 303810), hypohidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) (MIM 300291), and a newly recognised syndrome of EDA-ID with osteopetrosis and lymphoedema (OL-EDA-ID) are three conditions in this group for which a common causative gene has been identified.20–22 We included in this group other EDs with no causative gene identified in which major ectodermal derivative involvement, immunodeficiency, or functional abnormalities of the central nervous system are present. We believe that a specific functional pattern is likely to be altered in the pathogenesis of these kinds of disease.

EDs characterised by major skeletal involvement are included in this category as well. Ectrodactyly-ectodermal dysplasia-cleft lip/palate (EEC) (MIM 604292), ankyloblepharon-ectodermal dysplasia-cleft lip/palate (AEC) (MIM 106260), acro-dermato-ungual-lacrimal-tooth (ADULT) (MIM 103285), and Ellis-van Creveld (EvC) (MIM 225500) syndromes are included and their causative genes have been identified.23–28 Finally, we included EDs with endocrine defects. Hypothyroidism is frequently reported in association with EDs, for example, CLEIDOMALADY (MIM 225040) and ANOTHER syndrome (MIM 225050).29,30 In these cases, we think that the defect in epithelial-mesenchymal interaction is likely to be caused through a different functional pattern of signalling and that candidate genes are to be searched for among nuclear proteins such as transcription factors or among regulators of gene expression.

BILOGICAL-FUNCTIONAL FEATURES AND IDENTIFIED CAUSATIVE GENES

An altered epithelial-mesenchymal interaction seems to be one of the most important mechanisms in the pathogenesis of EDs. During the development of skin appendages, epithelium and mesenchyme are inducers and targets of each other.1 Secreted signal molecules transmit sequential and reciprocal inductive interactions between these two structures. The interaction between ectoderm and mesoderm is sustained by the expression of specific proteins which act through different morphogenetic signalling pathways.1 Basically, two functional patterns of regulation of this interaction have been identified and recognised as possible pathogenetic mechanisms in EDs so far.

The epithelial-mesenchymal interaction may be altered if the nuclear factor kappa beta (NF-kB) regulation pattern, acting through different signalling pathways, is involved. The ectodysplasin gene isoform A1 (EDA-A1) is mutated in X linked EDA.29 The DL gene is mutated in autosomal dominant EDA and in some patients with an autosomal recessive form of EDA.30 The same clinical expression is caused by different mutations in two genes whose products physically interact with each other in a receptor ligand system.30–31 In other families with autosomal recessive EDA, linkage to the DL locus has been excluded.30 Other causative genes probably involve the same mechanism of signal transduction beyond the EDA-A1/DL binding complex, resulting in an EDA phenotype. EDA-A1 and DL are two members of the tumour necrosis factor-like (TNF-like) ligand family and the tumour necrosis factor receptor (TNFR) superfamily genes, respectively.32–35 In the mouse, the Tabby (Ta) gene is homologous with human EDA.35 Its protein product is ectodysplasin. The expression of Ta in several epithelial cell lines did not result in prominent changes in cell morphology and did not promote apoptosis, as expected of TNF-like proteins, which are critically involved in cell survival and apoptosis. On the other hand, this protein promotes cell adhesion, a function consistent with its postulated role in the epithelial-mesenchymal interface, in cell-matrix interaction, and in regulation of the development of ectodermal appendages.34 The EDA-A1/DL binding complex seems to regulate NF-kB action by enhancing the latter’s activity through a specific novel signalling pathway.36 Recent findings have shown that DL triggers NF-kB through NEMO protein.37 The NEMO gene has been found to be deleted in many cases of familial IP.22 It encodes a protein whose activity is to modulate expression of NF-kB factor.22 This action eventually regulates the expression of genes controlling apoptosis. Cells from IP patients have been found to have extreme susceptibility to apoptosis, while, clinically, IP patients may present an abnormal immune response. NEMO exon 10 mutations have been found to cause another X linked EDA with immunodeficiency (EDA-ID).23 Similarly, NEMO is mutated in patients affected with OL-EDA-ID.26 IP, EDA-ID, and OL-EDA-ID are allelic diseases with a clear genotype-phenotype correlation, loss of function mutations (large deletions) determining X linked dominant IP and hypomorphic mutations (stop codon mutation) causing X linked recessive OL-EDA-ID.27 Patients affected with EDA-ID carry mutations in the NEMO coding region, further indicating a genotype-phenotype correlation among patients with NEMO mutations. These mutations probably exert a different, milder effect than the stop codon mutation, and this would explain why EDA-ID patients have a milder clinical phenotype than OL-EDA-ID patients.28 In EDA-ID patients a residual activity of EDA-A1/DL complex is likely to exist, and this could explain the milder EDA phenotype with regard to EDA-A1/DL patients. Finally, the NEMO gene is also mutated in a peculiar hypohidrotic ectodermal dysplasia with immunodeficiency characterised by hyper IgM.37 On the basis of these results, NEMO would be a reasonable candidate gene for other EDs with immunodeficiency such as onycho-tricho dysplasia with neutropenia (MIM 258360).

A defect in epithelial-mesenchymal interaction is also observed when some regulators of transcription and/or expression of genes with functions in signalling between ectoderm and mesenchyme are mutated. p63 and DLX3 proteins are two transcription factors mutated in some cases of EEC and AEC syndrome.

www.jmedgenet.com
These proteins influence the transcription of specific target genes by binding to actin binding elements located in their regulatory regions. The *EVC* gene is mutated in some patients affected with Ellis-van Creveld syndrome. The function of EVC is not known, but, as previously shown for p63 and DLX3, it may also act as a regulatory factor expressed in very early stages of development and may be essential for signalling pathways between ectoderm and mesenchyme. Its action may differentially regulate or be regulated by the expression of another gene, the collapsin response mediator protein-1 (*CRMP1*) (MIM 602462) located at the 3' end of *EVC* and presenting a tail-tail homology with the *EVC* gene. A sort of “reciprocal” sequestering of both EVC and CRMP1 at different stages of development has been proposed as one of the mechanisms of this regulation.

Group 2

The second group includes disorders in which a structural protein defect has been found or can be inferred by specific clinical features. Group 2 EDs are characterised by heterogeneous clinical findings. Major clinical signs are hyperkeratosis, as in Clouston disease (MIM 129500), deafness, cleft lip/palate (CLP), as in CLPED1 syndromes (Zlotogora-Ogur/Rosselli-Guglielmetti syndrome, MIM 225000, and ED Margarita type syndrome, MIM 225060), and retinal degeneration.

Biological-functional features and identified causative genes

Causative genes included in this group present a specific pattern of expression, being located at the adherens junction/gap junction/apicolarteral membrane domain and probably devoted to organisation of apical plasma membrane domains and integrity/stability of cell membrane/cytoskeleton compartment. The underlying pathogenetic mechanism is an abnormal function of structural proteins, basically required for the correct and normal formation of ectodermal derivatives.

Connexin 30, a gap junction protein highly expressed in skin and brain, is mutated in Clouston disease. Gap junction proteins have been reported to be involved in cooperation between cells, growth control, and regulation of development. Interestingly, a single point mutation in the same gene causes non-syndromic autosomal dominant deafness, while mutations in other connexins have been found to cause syndromic palmoplantar keratoderma and deafness or erythrokeratodermia variabilis. On the basis of these data, we think that connexins are good candidate genes for EDs in which either hyperkeratosis/palmoplantar keratoderma or deafness are present.

The plakophilin 1 (*PKP1*) protein is altered in patients with ED/skin fragility syndrome. It is a major accessory desmosomal plaque protein. *PKP1* is a member of the plakoglobin/β-catenin/armadillo family, has a fundamental role in cell to cell adhesion, and may act as a linker protein between the adherens junction, desmosomes, and cornified envelope in the apico-lateral plasma membrane of epithelial cells. The biological importance of PKP1 in maintaining the integrity/stability of the cell membrane/cytoskeleton compartment is proven by the demonstration, in cells from affected patients, of defective cell to cell interaction and abnormal distribution of keratin filaments, which are disorganised and do not participate in cytoskeleton formation.

The poliovirus receptor gene (*PVRL1*) is mutated in some forms of ED associated with cleft lip/palate (CLPED1). It encodes an immunoglobulin-like membrane receptor (nectin 1), which binds a scaffold protein with PDZ domains (afadin), and ponsin (nectin/afadin/ponsin complex, NAP system) and is located in the apico-lateral membrane domain near the adherens junction compartment. NAP system has a central importance in maintenance of cell membrane stability and integrity through binding of afadin to actin and the cortical cytoskeleton and through binding of ponsin to vinculin and possible linkage of either these two and nectin to the cadherin-catenin system. It also has a specific role in coordinating an array of signalling and cytoskeletal proteins. Owing to the presence of PDZ domains, afadin is likely to form hetero-multimers among different structures and to be closely anchored to other plasma membrane associated proteins. Nectin 1 has a primary role in triggering an intracellular signalling cascade devoted to a correct integration of cell-cell contacts, cell morphology, and the disposition and organisation of plasma membrane domains.

We decided to include in this group EDs with retinal degeneration as a major clinical sign. Some forms of syndromic retinitis pigmentosa/retinal degeneration associated with deafness (see Usher type 1C syndrome) are the result of mutations in PDZ proteins like harmonin. PDZ proteins play a central role in the organisation of protein complexes in plasma membrane domains and in cell junction formation. As discussed earlier, afadin is also a PDZ protein and is involved in the formation of the NAP system and coordination and transduction of the nectin 1 signal inside the intracellular compartment. We consider afadin and other PDZ proteins good candidate genes for EDs included in group 2 and in particular for those associated with retinal degeneration.

Conclusion and future perspectives

This classification allows a different approach to the patient affected with any form of ED by using major clinical features to guide the physician to a grouping by underlying mechanisms. We believe that this approach to EDs may also help researchers to find new candidate genes using “key” clinical signs to guide molecular investigation. This kind of approach may also be applicable to some other pathological conditions we decided not to include in our classification at this first attempt, because they did not fulfil the stringent inclusion criteria,
but are characterised by very similar "key signs" considered here, such as hyperkeratosis, keratoderma, or deafness. Our effort is a "work in progress" and some features discussed here may not be confirmed, in the future, by experimental findings. Nonetheless, we think that this is a useful tool in the recognition of pathological mechanisms in a confusing group of disorders.

In the EDs, different signalling pathways often converge on the same intracellular factors, or interact among them through common pathways of action, as exemplified by the role of NF-κB as a "key" molecule on which both EDA-A1/DL system and NEMO act (fig 1). Considering the augmented sensitivity to apoptosis in cells from subjects with IP, it would be interesting to test if the same phenomenon is present in both "tabby" and "dl" mice models. Recently, a novel orphan TNFR superfamily gene (TROY) has been identified, which shows high homology with DL in both coding sequence and specific pathways of expression. 62 In the mouse model, Troy has been mapped near the "waved coat" (wc) locus, a mutant type characterised by skin/ hair anomalies, 62 so we think that TROY is a good candidate gene for group 1 EDs. TROY also enhances NF-κB expression, but its function follows the known pathways of activation of TNF receptor associated factor (TRAF) 2, 5, and 6, 63 suggesting a double way of control of NF-κB by DL/TROY receptors. We also speculate on a possible role of TROY as an additional receptor for EDA. If this was experimentally supported, EDA might activate some cytoskeleton protein coding genes, such as p63, even directly or mediated by other(s) factor(s). Finally, we decided arbitrarily to include p63 in enhancing or regulating the expression of ectodermal structural proteins. Some other EDs show overlapping phenotypes between group 1 and group 2, such as EEM syndrome, in which both ectrodactyly and macular degeneration are present. 64 Again, it is intriguing to hypothesise that this complex phenotype could result from somewhat altered regulation on PDZ/cytoskeleton protein transcription by p63, even directly or mediated by other(s) factor(s). Finally, we decided arbitrarily to include Rapp-Hodgkin disease in group 1 and preliminarily to consider it as the result of a defect of epithelial-mesenchymal interaction by referring to the description of an EEC child born to a mother with clinical findings characteristic of EEC syndrome. CLPED1 syndromes are caused by mutations in the PVRL1 gene, which encodes a transmembrane receptor that is part of the NAP system and binds cytoskeleton and adherens junction domains. 65 Some cases of EEC and AEC syndromes are caused by mutations in p63. 23 24 The latter is likely to control transcription and expression of many genes, such as MSXI and SHH. 67 Interestingly, mutations in these genes have been proven to cause different types of CLP associated, in the case of MSXI, with defects in epidermal derivatives. 68

MSXI is supposed to interact physically with another group 1 protein, DLX3, mutated in patients affected with tricho-dento-osseous syndrome. DLX3 is a potent transactivator of some cytoskeleton protein coding genes, such as profilaggrin. 66 68 It would be interesting to test p63 or other transcription factors' activities in enhancing or regulating the expression of ectodermal structural proteins. Some other EDs show overlapping phenotypes between group 1 and group 2, such as EEM syndrome, in which both ectrodactyly and macular degeneration are present. 64 Again, it is intriguing to hypothesise that this complex phenotype could result from somewhat altered regulation on PDZ/cytoskeleton protein transcription by p63, even directly or mediated by other(s) factor(s). Finally, we decided arbitrarily to include Rapp-Hodgkin disease in group 1 and preliminarily to consider it as the result of a defect of epithelial-mesenchymal interaction by referring to the description of an EEC child born to a mother with clinical findings characteristic of

ISOform (EDA-A2) generated through the use of an alternative internal splice donor site of the EDA gene. 69 This latter is identical to EDA-A1 except for a two amino acid residue deletion in the COOH-terminus domain. This two residue insert in EDA-A1 is thought to be on the surface of the protein in an area expected to interact with receptors. The signalling triggered by the EDA-A2/XEDAR binding system induces NF-κB activation. The cytoplasmic region of XEDAR binds TRAF1, TRAF3, and TRAF6; this last (and not other TRAFs) is specifically related to activation of NF-κB after binding with XEDAR, thus indicating that TRAF6 is probably a key adapter molecule in transducing XEDAR mediated NF-κB signalling 64 (fig 1). In light of these hypotheses, the regulation of NF-κB activity in preventing apoptosis and in regulating the development of highly specific structures may be one of the most frequent mechanisms in EDs aetiopathogenesis.

Some transcription factors can be considered good candidate genes for other EDs classified in group 1. As explained in our previous report, 7 we think that MSX2 is a good candidate for those conditions with craniosynostosis or parietal foramina as "key signs", such as Sprengel's disease (MIM 218330) and tricho-odonto-onychial dysplasia with frontal bone deficiency (MIM 275452).

Interesting molecular and functional interactions among proteins mutated in the EDs included in groups 1 and 2 and sharing as a common clinical finding cleft lip/palate may be hypothesised. CLPED1 syndromes are caused by mutations in the PVR1 gene, which encodes a transmembrane receptor that is part of the NAP system and binds cytoskeleton and adherens junction domains. 65 Some cases of EEC and AEC syndromes are caused by mutations in p63. 23 24 The latter is likely to control transcription and expression of many genes, such as MSXI and SHH. 67 Interestingly, mutations in these genes have been proven to cause different types of CLP associated, in the case of MSXI, with defects in epidermal derivatives. 68

MSXI is supposed to interact physically with another group 1 protein, DLX3, mutated in patients affected with tricho-dento-osseous syndrome. DLX3 is a potent transactivator of some cytoskeleton protein coding genes, such as profilaggrin. 66 68 It would be interesting to test p63 or other transcription factors' activities in enhancing or regulating the expression of ectodermal structural proteins. Some other EDs show overlapping phenotypes between group 1 and group 2, such as EEM syndrome, in which both ectrodactyly and macular degeneration are present. 64 Again, it is intriguing to hypothesise that this complex phenotype could result from somewhat altered regulation on PDZ/cytoskeleton protein transcription by p63, even directly or mediated by other(s) factor(s). Finally, we decided arbitrarily to include Rapp-Hodgkin disease in group 1 and preliminarily to consider it as the result of a defect of epithelial-mesenchymal interaction by referring to the description of an EEC child born to a mother with clinical findings characteristic of

ISOform (EDA-A2) generated through the use of an alternative internal splice donor site of the EDA gene. 69 This latter is identical to EDA-A1 except for a two amino acid residue deletion in the COOH-terminus domain. This two residue insert in EDA-A1 is thought to be on the surface of the protein in an area expected to interact with receptors. The signalling triggered by the EDA-A2/XEDAR binding system induces NF-κB activation. The cytoplasmic region of XEDAR binds TRAF1, TRAF3, and TRAF6; this last (and not other TRAFs) is specifically related to activation of NF-κB after binding with XEDAR, thus indicating that TRAF6 is probably a key adapter molecule in transducing XEDAR mediated NF-κB signalling 64 (fig 1). In light of these hypotheses, the regulation of NF-κB activity in preventing apoptosis and in regulating the development of highly specific structures may be one of the most frequent mechanisms in EDs aetiopathogenesis.

Some transcription factors can be considered good candidate genes for other EDs classified in group 1. As explained in our previous report, 7 we think that MSX2 is a good candidate for those conditions with craniosynostosis or parietal foramina as "key signs", such as Sprengel's disease (MIM 218330) and tricho-odonto-onychial dysplasia with frontal bone deficiency (MIM 275452).

Interesting molecular and functional interactions among proteins mutated in the EDs included in groups 1 and 2 and sharing as a common clinical finding cleft lip/palate may be hypothesised. CLPED1 syndromes are caused by mutations in the PVR1 gene, which encodes a transmembrane receptor that is part of the NAP system and binds cytoskeleton and adherens junction domains. 65 Some cases of EEC and AEC syndromes are caused by mutations in p63. 23 24 The latter is likely to control transcription and expression of many genes, such as MSXI and SHH. 67 Interestingly, mutations in these genes have been proven to cause different types of CLP associated, in the case of MSXI, with defects in epidermal derivatives. 68

MSXI is supposed to interact physically with another group 1 protein, DLX3, mutated in patients affected with tricho-dento-osseous syndrome. DLX3 is a potent transactivator of some cytoskeleton protein coding genes, such as profilaggrin. 66 68 It would be interesting to test p63 or other transcription factors' activities in enhancing or regulating the expression of ectodermal structural proteins. Some other EDs show overlapping phenotypes between group 1 and group 2, such as EEM syndrome, in which both ectrodactyly and macular degeneration are present. 64 Again, it is intriguing to hypothesise that this complex phenotype could result from somewhat altered regulation on PDZ/cytoskeleton protein transcription by p63, even directly or mediated by other(s) factor(s). Finally, we decided arbitrarily to include Rapp-Hodgkin disease in group 1 and preliminarily to consider it as the result of a defect of epithelial-mesenchymal interaction by referring to the description of an EEC child born to a mother with clinical findings characteristic of
Rapp-Hodgkin disease. It would be possible to consider EEC/AEC and Rapp-Hodgkin disease as variable clinical expression of the same genetic entity. Although there is no evidence of p63 mutations in patients affected with Rapp-Hodgkin disease, other genes could be involved in the pathogenesis of the EEC/AEC/Rapp-Hodgkin disease clinical spectrum (genetic heterogeneity). Another genetic locus in 7q, named EEC1, has been suggested by linkage analysis studies. Two members of the DLX family, named DLX5 and DLX6, are mapped in this region. Again, complex physical or functional interactions among different proteins (in the specific case of p63 and members of the DLX family) could be hypothesised in the pathogenesis of the EEC phenotype.

Summary
The proposed classification is a great advance in understanding the biological mechanisms of ED development. The critical revision of Downes and colleagues using the stringent criteria described here led us to exclude single case reports and some very well known described phenotypes which do not strictly fulfil the classical definition of ED.

This first attempt at genotype-phenotype correlation in EDs has taught us that both clinical and molecular data can help in defining each single patient. Molecular interactions and pathological mechanisms can explain the many clinical signs, variability in severity, associated malformations, and overlap seen in some ED patients. Conversely, the accurate definition of "key signs" can aid researchers in an attempt to find new candidate ED genes.

We wish to thank Professor Virginia P Sybert for helpful discussion and for critical reading of the manuscript.

1. Thurnham J. Two cases in which the skin, hair and teeth were imperfectly developed. Proc R Med Soc Clin London 1848;3:71-81.

Baala L, Hadji Rabia S, Zlogotora J, Bababi K, Chhouli H, Munnoch A, Lyonnet S, Seftani A. Both recessive and autosomal dominant forms of anhidrotic/hypohidrotic ectoder-
Munoz F, Leustignat G, Sybert V, Friedman M, Alowlani A, Frossard PM, Jorgensen R, Zonana J. Definitive evidence for an autosomal recessive form of hypohidrotic ectodermal dysplasia clinically distinguishable from the more com-
Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, Golab M, Shapira SK, Furlanond PA, Wira DW, Einman SA, Ferguson BM. A novel X-linked disorder of immune defi-
ciency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-
Van Bokhoven H, McGrath JA, Dufil P, Celi J, Hamel BCJ, de Waal R, Brunner HG. P63 mutations in the EEC, Hay-
Wells, ADULT syndromes and its split hand/foot malforma-
Kumar A, Eby MT, Sinha S, Jasmin A, Chaudhary PM. Ectodermal dysplasia receptor activates the nuclear factor...
Ectodermal dysplasias: a new clinical-genetic classification

585

