Polymorphisms in PTEN in breast cancer families

Bryan T Carroll, Fergus J Couch, Timothy R Rebbeck, Barbara L Weber

Abstract
Germline mutations in PTEN are the underlying genetic defect in Cowden disease, which is associated with a lifetime risk of 25-50% of developing breast cancer. To investigate the role of PTEN in inherited breast cancer in the absence of manifestations of Cowden disease, we screened 177 unrelated subjects with breast cancer who also had a family history of breast cancer in at least one relative. We found no disease associated PTEN mutations in this cohort, supporting previous studies suggesting that PTEN mutations do not contribute to inherited susceptibility to breast cancer without associated manifestations of Cowden disease. We did identify an association between a common polymorphism in intron 4 and lower mean age of diagnosis of breast cancer. While preliminary, these findings suggest that further study is warranted to determine whether this allelic variant of PTEN could function as a low penetrance breast cancer susceptibility allele.

Keywords: PTEN/MMAC1/TEP1; breast cancer; polymorphisms; Cowden disease

PTEN/MMAC1/TEP1, located on chromosome 10q23, codes for a tyrosine phosphatase with putative tumour suppressing abilities. Germline mutations of PTEN are thought to be responsible for Cowden disease, which is characterised by multiple benign and malignant neoplasms including breast cancer, thyroid cancer, and intestinal polyps. Somatic mutations in PTEN have been implicated in the tumorigenesis of several types of cancers, including glioblastoma, breast cancer (in association with Cowden disease), advanced prostate cancer, thyroid cancer (in association with Cowden disease), and endometrial cancer. Mutations of PTEN have been reported in 44 of 90 Cowden disease families described to date. Mutations of PTEN have also been identified in families with Bannayan-Zonana syndrome, a disorder that shares some clinical features with Cowden disease. The lifetime breast cancer risk in women with Cowden disease is estimated to be 25-50%. Therefore, several groups have evaluated whether germline mutations in PTEN explain an inherited susceptibility to breast cancer in women. PTEN mutations have been identified in women with breast cancer from Cowden disease families. However, no germline PTEN mutations have been reported in women with inherited susceptibility to breast cancer in the absence of other manifestations of Cowden disease. Nonetheless, the prevalence of breast cancer in Cowden disease families and the occurrence of somatic PTEN mutations in a small subset of sporadic breast tumours suggests that variants of PTEN could contribute to breast tumorigenesis, including inherited breast cancers.

To investigate the role of germline PTEN variants in inherited breast cancer, we screened 177 unrelated probands affected with breast cancer or ovarian cancer, who also had a family history of breast cancer, for PTEN mutations. Of these, 151 were women and 26 were men. All of the probands had been screened for, but did not have, detectable mutations in the hereditary breast cancer genes BRCA1 or BRCA2. Several tumour types, in addition to breast or ovarian cancer, that have been previously shown to be related to PTEN mutations or Cowden disease were diagnosed in some probands. These included three subjects with thyroid cancer, two with endometrial cancer, and one with a brain tumour. Thirty-five of the probands had a family history of male breast cancer, with 26 probands being affected males. All samples were screened for PTEN mutations by conformation sensitive gel electrophoresis (CSGE) using primers as described by Steck et al. A total of four different

<table>
<thead>
<tr>
<th>Exon/intron</th>
<th>Variant</th>
<th>Observations</th>
<th>Frequency</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS1</td>
<td>82-126A>G</td>
<td>1/177</td>
<td>0.006</td>
<td>No effect on splicing by in vitro and in vivo assays</td>
</tr>
<tr>
<td>IVS4</td>
<td>210+109insS</td>
<td>66/177</td>
<td>0.37</td>
<td>Associated with decreased age of breast cancer diagnosis in insertion homozygotes</td>
</tr>
</tbody>
</table>

Table 1 Polymorphisms seen in PTEN in patients with breast cancer and a family history of breast cancer
Polymorphisms in PTEN

variants were identified in nine of 177 subjects (table 1).

Two novel variants, IVS1, 82-126A>G and IVS 9, 1212+65insA, identified in five unrelated subjects, are presumed to be too distant from the PTEN exons to affect normal function. One is a transition from an A to G, positioned in intron 1, 126 bp upstream of exon 2 in one subject. The other is a single A inserted into a string of 10 As, positioned 65 bp downstream of exon 9 and the ninth intron in four subjects. Neither variant was associated with bilateral breast cancer, younger age of breast cancer diagnosis, nor with primary tumours at other sites associated with Cowden disease.

The third variant, IVS1, 82-4A>G, identified in one subject, was an A to G transition located in intron 1, 4 bp upstream of exon 2. This variant falls within a consensus splice acceptor site. However, this variant is at a non-conserved site within the consensus splice acceptor sequence, suggesting that a variant at this position would not affect splicing. In order to evaluate the possibility that this sequence change could disrupt splicing, we both constructed a splicing vector with this sequence and analysed PTEN RNA from the peripheral blood lymphocytes of an affected carrier of this variant.

Splicing vectors were created by inserting DNA containing exon 2 and a portion of the adjoining introns into a pSPL3 exon trapping vector (GIBCO BRL). The pSPL3 vector consists of two short exons with functional splice sites separated by an intronic segment that contains the multiple cloning site (fig 1A). When transfected into eukaryotic cells, these splice sites are functional and the resulting DNA fragment is transcribed. The resulting RNA is then analysed followed reverse transcription and PCR amplification. We amplified patient DNA using primers in introns 2 and 3, inserted the product into pCR2.1 cloning vectors, and then transferred the fragments into the pSPL3 vector to make three plasmids: (1) a wild type sequence, (2) the 82-4A>G sequence in reverse orientation, and (3) the 82-4A>G sequence in the forward orientation. The three constructs were transfected into Cos 7 cells according to the manufacturer’s recommended protocols. At 24 hours, RNA was harvested and reverse transcribed. Primers (dUSD2 and dUSA4) within the two vector exons were used to amplify products from the three pools of cDNA. No alternatively spliced fragments resulting from the 82-4A>G (IVS1) variant were detected (fig 1B).

In addition, peripheral blood lymphocytes were obtained from the affected subject. Random primed cDNA was amplified with primers from exon 1 and exon 3 (5'GCCATCATTCAACGCTCG3' and 5'CTTAGCTGTGTTGGGTATG3'). The size of the resulting single band was consistent with the in vitro splicing data, suggesting that the 82-4A>G (IVS1) variant did not disrupt splicing (fig 1C). Thus, it is likely that this variant is not a disease associated mutation.

The fourth variant, IVS4, 210+109ins5, identified in 37% of alleles (66 of 177 patients), is an ACTAA insertion 109 bp downstream of exon 4 in intron 4. As shown in fig 2, the mean age of diagnosis for homozygous normal and heterozygous subjects was 48.1 years, which was significantly different from the mean age of diagnosis of 42.7 years (χ2=0.024) for subjects homozygous for the insertion variant. No effect was observed in the age of male breast cancer diagnosis, although the small sample size may have limited our ability to detect such a difference. While this polymorphism has been reported by three other groups,7 16 17 no similar effect on age of diagnosis in any tumour types has been reported. The frequency of the 5 bp insertion allele is similar to the 40% of alleles reported in another study,17 but is different from the 53% and 54% of alleles identified in the two reports of sporadic tumours.16 10

The potential functional role of the 5 bp insertion in the modification of age at breast cancer diagnosis is not clear. Of note, the frequency of mutations and the presence of the phosphatase core motif in the adjoining exon 5 have led to exon 5 being described as a “hot spot” for mutations in Cowden disease.5 10 Whether 210+109ins5 (IVS4) disrupts splicing or expression is unknown. The region has no homology to consensuses sites or lariat formation sites. The variant position, next to an exon that is a hot spot for Cowden disease mutations, suggests that a splicing error deleting exon 5 could have a potentially significant effect. However, no alternative splice forms were
identified in any of the three genotypes using RT-PCR across exon 5 (5’AGACATTAT-GACACGGCCA3’ and 5’CAACAGTG-GCCACTGTTCTA3’) (data not shown). Alternatively, this variant may be in linkage disequilibrium with a functional mutation in another gene. While the effect of the variant may be tissue specific and thus not detected by the methods used here, any functional effect remains speculative.

As in the two previous reports describing PTEN mutation studies in breast cancer families, there were no PTEN coding region mutations in any of the non-BRCA1, non-BRCA2 breast cancer families studied in this analysis. Based on our experience with CSGE for mutation analysis in other genes, we estimate the sensitivity of this heteroduplex detection technique to be in the range of 95-98%, far superior to single strand conformation polymorphism (SSCP) analysis in our hands. These data add further support to the growing body of evidence that while there is convincing evidence for the role of PTEN in Cowden disease, which includes an increased risk for developing breast cancer, germline coding mutations in PTEN do not play a role in the inheritance of susceptibility for breast cancer in site specific breast cancer families. As Cowden disease is both rare and generally recognisable as a clinical entity, our data do not support clinical testing for PTEN mutations as part of the evaluation of familial breast cancer if other evidence of Cowden disease is lacking.

While germline coding region mutations in PTEN do not appear to explain a significant number of non-BRCA1, non-BRCA2 inherited breast cancer, the 210+109ins5 (IVS4) polymorphism is associated with earlier age of breast cancer diagnosis in our familial breast cancer cohort, and suggests that PTEN could be acting as a modifier gene in this setting. More detailed studies of the function of PTEN and the 5 bp insertion polymorphism may help elucidate the role of PTEN.

Incidence of germline \textit{hMLH1} and \textit{hMSH2} mutations (HNPCC patients) among newly diagnosed colorectal cancers in a Slovenian population

EDITOR—Hereditary non-polyposis colorectal cancer (HNPCC) syndrome is a common autosomal dominant predisposition to colorectal cancer. Clinical diagnostic features of sporadic and HNPCC associated colorectal cancer do not differ significantly and until recently the identification of HNPCC patients was based mainly on their family history. Because of the importance for relatives of HNPCC patients to be clinically examined frequently in order to detect the disease at an early, curable stage, the International Collaborative Group (ICG) on HNPCC proposed criteria for identification of HNPCC families. According to the guidelines agreed by the ICG in Amsterdam in 1990, an HNPCC family has to fulfil the following criteria: there should be at least three relatives with colorectal cancer (one of whom is a first degree relative to the other two), at least two successive generations should be affected, and one relative should be diagnosed under the age of 50.1 CRC patients with HNPCC syndrome can also develop cancer of the endometrium, stomach, ovary, and urinary and hepatobiliary tracts.2–5 In several epidemiological studies, the incidence of HNPCC has been estimated to be between 0.5%6 and 15%3 of all colorectal cancers. The identification of mismatch repair genes (MMR), of which at least five (\textit{hMLH1},7,8 \textit{hMSH2},9,10 \textit{PMS1},10–12 \textit{PMS2},7 \textit{and} \textit{hMSH6 (GTBP)}11) are associated with HNPCC, has enabled mutational analysis in families fulfilling complete or partial Amsterdam criteria. Carriers of germline MMR alterations have a higher than 80% risk for cancer by the age of 75.2 The great majority of germline mutations were found in approximately equal proportions in \textit{hMLH1} and \textit{hMSH2}, while mutations in the other three MMR genes have been reported only in a limited number of cases.12 Germline \textit{hMLH1} and \textit{hMSH2} mutations were also found in a considerable proportion of colorectal cancer patients from families not fulfilling the Amsterdam criteria,13 especially if they were young,14 15 indicating that some HNPCC families might be missed if they are preselected before mutational analysis.

Mutations in MMR genes result in microsatellite instability (MSI),16 which is characteristic of more than 90% of tumours in HNPCC patients but was also found in 12-15% of sporadic colorectal tumours.17–19 In the absence of other diagnostic criteria, MSI analysis of tumours could be valuable markers in HNPCC identification.

Here we report an effective MSI analysis of CRC and subsequent mutational analysis of the \textit{hMLH1} and \textit{hMSH2} genes in tumours with considerable MSI for identification of HNPCC among randomly collected, newly diagnosed colorectal cancers. This approach allowed us to identify HNPCC families and to estimate the minimal incidence of HNPCC in a Slovenian population based solely on molecular genetic analysis.

Primary colorectal adenocarcinomas and corresponding normal tissue samples were collected from patients who gave consent for testing of their DNA. Between 1996 and 1998, 300 newly diagnosed CRC patients from clinics all over Slovenia participated in this study. The sample of CRC is thus representative for the Slovenian population. All samples were gathered in a central institution where two physicians histologically evaluated each resection for a high proportion of tumour tissue. We also confirmed a high proportion of cancer cells versus normal cells in tumour tissue in many samples that exhibited LOH during MSI analysis. Normal colorectal mucosa taken from a site distant from the tumour was used as a normal control in the study.

We isolated DNA after tissue digestion using standard phenol/chloroform extraction and ethanol precipitation from frozen colorectal tumours and corresponding normal tissue samples. For MSI analysis of tumour and control

![Figure 1](image-url)
tissue pairs, we tested the majority of samples with the following markers: mononucleotides BAT26,11 BAT25,11 and BAT40,20 dinucleotides D2S123,21 D5S346,22 TP53,23 D11S1294,24 D11S2179,24 D17S250,25 D18S58,26 and D18S69,27 and tetranucleotide MYCLY.28 Tumours were scored as high MSI if more than 40% of tested markers were positive and were scored as low MSI if less than 20% of tested markers were positive. During the analysis, it turned out that for determination of high MSI status four selected markers were sufficient, BAT26, D2123, BAT25, and D5S346. Therefore, we analysed additional samples in multiplex PCR reactions for microsatellite markers BAT26 and D2123, and BAT25 and D5S346, respectively. In this case, tumour tissue was scored as high MSI if at least two of four markers were altered.

MSI analysis was performed as previously described.29 Briefly, after PCR amplification products were run on a thin (0.4 mm) denaturing polyacrylamide gel matrix fixed on one of the glass plates followed by an optimised silver staining protocol that markedly improved the resolution. MSI was detected as some additional bands in tumour DNA compared to control DNA (fig 1A).

For mutational analysis of hMLH1 and hMSH2 mismatch repair genes (MMR), we used PCR/non-isotopic conformation analysis (article in preparation). The basic principle of this method is a combination of three analyses which are all based on changes in three dimensional DNA structures, that is, single strand conformation analysis (SSCA), heteroduplex analysis (HA), and double strand conformation analysis (DSCA). We conducted them simultaneously on the same thin polyacrylamide gel.

Altogether, of 300 randomly collected primary colorectal tumours, 29 (9.7%) were classified as high MSI tumours and 23 (7.7%) as low MSI tumours. The use of BAT26 only has been previously proposed for determination of high MSI status.20 Our results show that using only this marker we would have missed one of 29 high MSI tumours. On the other hand, no low MSI tumour was positive for BAT26 or BAT25.

Genomic DNA from 29 subjects with high microsatellite instability tumours were further analysed for the presence of germline mutations in two MMR genes. The whole coding regions as well as all exon/intron boundaries of hMLH1 and hMSH2 were tested with PCR/ conformational analysis. We observed 17 different aberrant gel migrations in 29 DNA samples from patients with high MSI tumours. All 17 alterations were detected as single stranded conformational polymorphisms, one sample also showed altered double stranded conformation, and in two samples heteroduplexes were also formed. Eleven alterations were in hMLH1 and six in hMSH2. Sequencing showed four presumably pathogenic mutations, three in hMLH1 and one in hMSH2 (table 1). A new polymorphism IVS9+10A>G in hMLH1 (allele frequency 0.02) has also been detected (fig 1B, C).

Mutations G67R and I655T in hMLH1 have been previously reported31–32 in connection with hereditary bowel cancer, while Q562X has been detected for the first time among Slovenian patients with high MSI CRC tumours. We also detected a germline deletion of three consecutive amino acids from 188-190 in hMSH2 in a person with a high MSI tumour (OG/97-2426-T). The same mutation was previously found in a Slovenian patient (HNPCC-8-2B) with a family history of CRC.33 Although these two patients live in different parts of Slovenia and have different family names, a retrospective pedigree search showed common roots two generations back and resulted in the identification of an extensive Slovenian HNPCC pedigree (fig 2). Similarly, other patients with germline mutations were contacted for their family history. All patients with germline mutations accessed via MSI analysis had at least one first degree relative with HNPCC associated cancer.

In this study, we used a molecular genetic approach for identification of HNPCC families. Our approach was based firstly on microsatellite instability (MSI) analysis of newly diagnosed randomly collected CRC and subsequently on mutational analysis of mismatch repair genes (MMR) in MSI positive tumours. We used a solely molecular genetic approach for detecting HNPCC families because (1) a considerable proportion of germline MMR mutations were found in patients from families not fulfilling the Amsterdam criteria,15–16 and (2) access to well organised cancer registries is not available in many countries. In Slovenia, a cancer registry exists but it does not contain family data. No specialised registries for hereditary forms of cancer are available. In our first attempt to identify Slovenian HNPCC families, 600 colorectal cancer patients were questioned for their family history data. A total of 44 patients reported at least one first degree relative with CRC and 16 families agreed to contribute blood samples for DNA analysis. Germline mutation was detected in one family only.31 This approach

Table 1 Pathogenic germline hMLH1 and hMSH2 mutations identified in high MSI tumours

<table>
<thead>
<tr>
<th>Gene and patient</th>
<th>Exon</th>
<th>Nucleotide change</th>
<th>Consequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>hMLH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OG/98-2989</td>
<td>2</td>
<td>199 G→A</td>
<td>G67R</td>
<td>31</td>
</tr>
<tr>
<td>OG/97-4266</td>
<td>15</td>
<td>1684 C→T</td>
<td>Q562X</td>
<td>This study</td>
</tr>
<tr>
<td>OG/97-3941</td>
<td>17</td>
<td>1964 T→C</td>
<td>I655T</td>
<td>32</td>
</tr>
<tr>
<td>hMSH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OG/97-2426</td>
<td>3</td>
<td>561 del TGAGGCTCT</td>
<td>In frame del of codons 188-190</td>
<td>33</td>
</tr>
</tbody>
</table>

Figure 2. Extended Slovenian HNPCC family with deletion of three amino acids (188-190) in hMSH2. We found this germline deletion in a subject with high MSI tumour (OG/97-2426). We also previously detected the same mutation in a Slovenian patient (HNPCC-8-2B) with a family history of CRC.31 A retrospective pedigree search showed common roots of both patients’ families two generations back. The resulting extended HNPCC family spans six generations and has 162 family members. Affected members are shaded. Presymptomatic DNA testing identified five non-carriers and one carrier of the mutation (8-7).
showed some inaccuracy of data obtained directly from patients and suggested that epidemiological studies of HNPCC incidence based on patients’ answers should be treated with caution.

With a molecular genetic approach, we found germline mutations in four out of 300 newly diagnosed colorectal cancers. These four alterations are unambiguously pathogenic mutations; one is a deletion, one is nonsense, and two are missense mutations. Two mutations are so far specific for Slovenian families: a deletion of codons 188-190 in exon 3 of hMSH2 (fig 2) and a C to T substitution in exon 15 of hMLH1 resulting in a stop codon at 562. A substitution of Ile to Thr at codon 655 in a patient OG/97-3941 was previously reported in a patient with gastric carcinoma.52 Interestingly, also, Slovenian patient OG/97-3941 had a metastatic gastric cancer two years after colon cancer. The Gln to Arg substitution at codon 67 was previously described in a Swedish HNPCC family53 and its pathogenicity was proved in a functional assay in yeast.54 It is possible that we missed some tumours with MMR gene mutation, because we analysed only MSI positive tumours. Cases with MMR mutations without MSI were also reported.55 However, 1.3% (4/300) tumours with germline MMR gene mutations in the Slovenian population is lower than the 2% observed in a similar study in a Finnish population. If the common ancestral Finnish specific mutation, which accounts for a half of all Finnish HNPCC families,55 is excluded the prevalence in our country is even higher than in Finland. No comparison with other populations using a similar approach is currently available. Finnish and Slovenian molecular genetic based estimations of HNPCC incidence are considerably lower than the 5-10% estimated in the majority of epidemiological studies.56 However, Evans et al also reported the incidence of HNPCC to be 1.4%. Their population based study of 1137 consecutive cases of colorectal cancer showed a lower frequency of familial bowel cancer than previous studies and may reflect a lower incidence of inherited mutations in the HNPCC MMR genes than is currently accepted.57 Since germline mutation in MMR genes is a reliable indicator of HNPCC syndrome, the estimation of incidence of this hereditary disorder in a Slovenian population could be calculated. If we consider 10 000 newborns annually and 850 newly diagnosed colorectal cancer cases annually58 (of which 1.3% have germline MMR gene mutation), the HNPCC incidence in the Slovenian population is approximately 1 in 1700. However, this estimate represents the absolute minimum. It is possible that we missed some mutations because of technical limitations and because we did not analyse three minor genes (hPMS1, hPMS2, and hMSH6), which are also predisposing factors for HNPCC. Another reason for underestimation of the disease frequency might be that we only searched for mutations in patients with colorectal cancer, but this cancer accounts for only approximately two thirds of cancers in HNPCC affected families.59

The proportion of patients younger than 50 years in our study was the same as it is for colorectal cancer patients in the complete National Cancer Registry indicating that there was no bias in overestimation according to age.

With molecular genetic analysis of colorectal cancers, we were able to identify Slovenian families with a hereditary form of CRC. Only patients with germline MMR mutations who wished to be acquainted with the results of DNA testing were further contacted by both a gastroenterologist and a geneticist for future medical surveillance and family history data. Some extended HNPCC pedigrees have thus been detected. Through this study, we succeeded in providing more information about the role of molecular genetic analysis to general physicians and HNPCC family members. Presymptomatic DNA testing was offered to well informed and consenting non-symptomatic relatives. A prevention programme in the sense of periodic clinical examination of relatives with a constitutional mutation has been initiated. In particular, records of young CRC patients have been re-examined for family and clinical data and additional potential HNPCC families have been identified. This enabled us to initiate building of a national HNPCC registry.

We conclude that a molecular genetic approach with evaluated genetic markers for efficient MSI analysis and subsequent MMR gene analysis of patients with MSI positive tumours is valuable for identification and surveillance of HNPCC families and may serve also as a model for detection of familial cases of CRC in other populations.

The Ministry of Science and Technology of the Republic of Slovenia supported this study (Project J3-7919-0381). The scope of the study was agreed by the Medical Ethical Commission of the Republic of Slovenia in October 1995. We are grateful to the patients who participated in the study. We thank Rastko Goloub and Anton Cerar for patients’ tissue samples. We also thank Tomaz Kralovec and Aloj Novak for excellent technical assistance.

Does the survival motor neuron protein (SMN) interact with Bcl-2?

Editor—Spinal muscular atrophy (SMA) is an autosomal recessive disease resulting from mutations in the telomeric copy of the survival motor neuron gene (SMN). 2, 3 which results in reduced expression of the survival of motor neuron gene product (SMN). 4, 5 The SMN protein is ubiquitously expressed but is found at high levels in motor neurons. 6, 7 The SMN protein associates with Sm proteins, 8 SIP-1 protein, 9 and itself. 10 SMN is found in structures termed gems that are associated with coiled bodies in the nucleus. The SMN protein is involved in RNA biogenesis 11 and is important for the maturation of a functional snRNP complex that performs splicing. 12 The complete loss of SMN is lethal whereas the low levels of SMN found in SMA cause loss of the motor neurons. 13 The mechanism by which the reduced SMN protein levels in the loss of motor neurons is unknown. Some groups have suggested it occurs by apoptosis. 14 Apoptosis is a conserved, highly regulated mechanism of non-chromosomal cell death for the removal of surplus, aged, or damaged cells. 15 Apoptosis is regulated by the interactions of apoptosis agonists and antagonist with the Bcl-2 protein being one of the key inhibitors of apoptosis. 16

Recently Iwahashi et al. 17 have suggested a direct interaction between SMN and Bcl-2 using transfected constructs. In an effort to confirm and extend their results, we have attempted to coimmunoprecipitate SMN and Bcl-2 both in a native environment and using transfected cells. The SMN protein and Bcl-2 are expressed in Jurkat cells and in spinal cord. Jurkat cells are a human lymphoblast T cell line that has been previously shown to express Bcl-2 and can be induced to undergo apoptosis. 18, 19

Immunoprecipitation experiments were performed using two different methods. 20 Fig 1A shows a western blot of the immunoprecipitation reactions using the method of Iwahashi et al. 17 Jurkat cell lysate was precipitated with anti-SMN (MANSMA2), anti-Bcl-2 (Bcl-2(100)), and anti-dystrophin (MANDYS-1) monoclonal antibodies. The precipitated proteins were western blotted and probed with anti-SMN or anti-Bcl-2 polyclonal antibodies. As shown in fig 1A-1, anti-SMN polyclonal antibodies precipitated with anti-SMN (MANSMA2), anti-Bcl-2 are expressed in Jurkat cells and in spinal cord. Therefore, we investigated cells transfected with SMN/Bcl-2 expression constructs. We have prepared various SMN expression constructs with or without the HA epitope tag at the amino-terminus. Immunoprecipitations were performed. 17
on the transfected cells using an HA epitope monoclonal and the Bcl-2 antibodies described above. The HA antibodies resulted in immunoprecipitation of SMN and not Bcl-2 whereas Bcl-2 antibodies immunoprecipitated Bcl-2 alone (fig 2A). The transfection studies provided no evidence for interaction of SMN and Bcl-2.

Dual labelling of COS-7 cells cotransfected with SMN and HA tagged SIP-1 expression constructs shows SMN and SIP-1 are colocalised as previously reported (fig 2B). Dual labelling of SMN and Bcl-2 using cotransfection of a HA tagged SMN expression construct and a Bcl-2 expression construct failed to show convincing colocalisation of SMN and Bcl-2 in either COS-7 (fig 2C) or HeLa cells (not shown). As seen in fig 2C, in the cotransfected cell Bcl-2 is expressed abundantly throughout the cytoplasm. Similarly, overexpressed SMN is located in cytoplasmic particles, and throughout the cytoplasm. Even under these conditions of extreme overexpression, there is no clear example of colocalisation, as would be expected if they associate. The apparent association of diffuse staining of SMN and Bcl-2 in the cytoplasm most likely arises from overlapping expression distributions as supported by the immunoprecipitation results.

Although we cannot exclude the possibility that SMN and Bcl-2 interact indirectly with each other in cell death pathways, these results strongly indicate that SMN and Bcl-2 do not directly interact in vivo. It is most likely that the high expression levels in the experiments of Iwahashi et al resulted in artefactual aggregation of Bcl-2 and SMN and that this interaction does not exist in vivo. In order to show clearly a synergistic effect of Bcl-2 and SMN either by direct or indirect mechanisms, it is important to eliminate the possibility that transfection of SMN increases Bcl-2 levels. It appears most likely that the reduction in SMN levels results in inefficient splicing which leads to a reduction or accumulation of a critical product that causes death of the motor neurons.
Figure 2 (A) Immunoprecipitation of transiently transfected HA tagged SMN and Bcl-2 from COS-7 cells. COS-7 cells, transiently cotransfected with Bcl-2 and HA tagged SMN expression constructs, were immunoprecipitated using rabbit anti-Bcl-2 polyclonal (lanes 1–3) and rabbit anti-HA (lanes 5–7) polyclonal antibody as indicated above the blot. As indicated below the blot, lanes 1 and 7 were probed with anti-SMN monoclonal antibody MANSMA2. Lanes 2 and 5 were probed with anti-Bcl-2 (100) monoclonal antibody. As seen in lanes 1 and 2, HA-SMN is not coimmunoprecipitated with HA-SMN. The middle and lower panels show western blots of the proteins remaining in the supernatants following the immunoprecipitation reactions. These are included to indicate the relative levels of Bcl-2, SMN, and HA-SMN expression in the transfected cells. Additionally, neither SMN nor HA-SMN are depleted from the supernatant incubated with anti-Bcl-2 polyclonal antibody (middle panel), but Bcl-2 is depleted (bottom panel). The reciprocal experiment shows only HA-SMN is depleted by the anti-HA monoclonal antibody (middle panel), but neither SMN nor Bcl-2 (bottom panel) is depleted. (B) Immunofluorescent detection of SMN and HA tagged SIP-1 in transiently cotransfected COS-7 cells. SMN (left panel), indirectly labelled with an FITC conjugated antibody, is located in gems, cytoplasmic particles, and diffusely in the cytoplasm. HA tagged SIP-1 (middle panel), indirectly labelled with TRITC conjugated antibodies, shows a similar distribution pattern. Merging the left and middle images (right panel) clearly shows the association of SMN and SIP1 as previously reported. (C) Dual labelling of HA tagged SMN and Bcl-2 detected with anti-HA polyclonal and anti-Bcl-2 monoclonal antibodies. SMN (left panel), indirectly labelled with an FITC conjugated antibody, is localised in gems, cytoplasmic particles, and faint diffuse staining (green indicated by arrows). Bcl-2 (middle panel), indirectly labelled with a TRITC conjugated secondary antibody, is expressed throughout the cytoplasm (red, diffuse fluorescence). In contrast to the SIP-1/SMN merged image above, the merged image (right panel) indicates a lack of colocalisation of SMN and Bcl-2. Methods. COS-7 cells (~10^5) were seeded onto coverslips and prepared as described previously. Bcl-2(100) and Bcl-2(C21) (Santa Cruz Biotechnology Inc) and anti-HA polyclonal antibody (BabCO) were used at 1/500 dilution. The secondary antibodies, rabbit anti-haemagglutinin antibody conjugated to TRITC (Sigma) and donkey anti-chicken F(ab)2 antibody conjugated to FITC (Jackson Immunoresearch) were used at 1:400 dilution. SIP-1 cDNA was ligated to haemagglutinin (HA) tag and subcloned into the pcDNA3 vector. Bcl-2 was subcloned into pcDNA3 vector. DNA plasmids were prepared for transfection using Endo Free Plasmid Kit (Qiagen). COS-7 cells were transfected with an O Physa colour digital camera using FITC and TRITC/DAPI double pass filters. Total magnification of images is 945x.

This work was funded by MDA, Families of SMA, and the Preston Fund, and NIH grant NS 38650.

*Department of Medical Biochemistry, Ohio State University, College of Medicine, Columbus OH 43210, USA
‡MRIC Biochemistry Group, NE Wales Institute, Wrexham, UK
§Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
*Department of Neurology Ohio State University, College of Medicine and Dept of Molecular Genetics, College of Biological Sciences, Columbus, OH 43210, USA

Correspondence to: Dr Burghes, Department of Medical Biochemistry, 363 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA, burghes.1@osu.edu

†These authors contributed equally to this work.

Novel mutations in the homogentisate-1,2-dioxygenase gene identified in Slovak patients with alkaptonuria

Editor—Alkaptonuria (AKU, McKusick No 203500), a rare autosomal recessive disorder (1:250 000), is a classical example of a specific biochemical lesion leading to degenerative disease. As a result of deficiency of homogentisic acid 1,2-dioxygenase activity (HGO, E.C. 1.13.11.5), AKU patients are unable to degrade homogentisic acid (HGA), an intermediary metabolite in phenylalanine and tyrosine catabolism. Accumulated HGA is excreted into the urine in large amounts, which darkens on standing. Over the years, benzoquinone acetic acid, an oxidation product of HGA, is deposited in connective tissues, causing their pigmentation (ochronosis), which leads to painful and disabling arthropathy of the large joints and spine (ochronotic arthropathy).

AKU was the first disease interpreted in terms of Mendelian inheritance. The HGO gene in humans is located on chromosome 3q21-23. Founder effects as the consequence of genetic isolation have been postulated to explain this observation. Here, we present results of mutation screening of the HGO gene in 32 AKU chromosomes carried by 17 Slovak AKU patients (in two families, one chromosome was shared by two patients from different generations). All 14 exons of the HGO gene were amplified from genomic DNA, using PCR primers and conditions as described by Fernandez-Canon et al. PCR products were analysed for the presence of mutations by non-radioactive single strand conformation polymorphism analysis (SSCP). DNA was visualised by silver staining essentially as described by Budowle et al. Fragments showing SSCP shifts were sequenced directly using the dye terminator cycle sequencing kit (Perkin Elmer) with Tag FS DNA polymerase. Sequences were resolved on an ABI-310 Automatic Analyser.

In our patients, we identified nine different mutations (tables 1 and 2). Four of them were novel mutations, two missense (S47L, G270R), a frameshift (P370fs), and a splice site mutation (IVS5+1G→A), increasing the total number of known AKU causing nucleotide changes within the HGO gene to 28. The remaining five mutations have been described previously: G161R and G152fs, P230S and V300G, and IVS1-1G→A.

Novel mutation S47L is caused by a transition C→T at the second position of codon 47 (fig 1A). This transition abolishes a restriction site for MboI in exon 3 PCR fragments. The presence of the S47L mutation in our patient was confirmed by MboI digestion (fig 2A).

Mutation G270R is caused by transition G→A at the first position of codon 270, which creates a novel EcoNI restriction site (fig 1C). Therefore, in our patients was confirmed by restriction digestion of exon 11 PCR fragments with EcoNI (fig 2B). Glycine at position 270, affected by this mutation, is conserved in man, mouse, and Aspergillus nidulans (fig 3).

Splice site mutation IVS5+1G→A affects the donor splice sites of intron 5 (fig 1B). Interestingly, Beltran-Valero de Bernabe et al identified in one patient from Holland a transversion G→T affecting the same position of intron 5 as our mutation IVS5+1G→A. This mutation, however, was not identified in our patients.

Mutation IVS1-1G→A abolishes restriction sites for Rsal, so the presence of this mutation on one AKU chromosome was confirmed by restriction analysis of the corresponding PCR fragment with this enzyme (fig 2A).

A novel P370fs frameshift mutation, caused by a single base insertion c1273insC (fig 1D), brings about a premature translation stop four codons downstream and subsequent

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Family code</th>
<th>HGO mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALK1</td>
<td>G152fs</td>
</tr>
<tr>
<td>2</td>
<td>ALK2</td>
<td>IVS5+1G→A</td>
</tr>
<tr>
<td>3</td>
<td>ALK3</td>
<td>IVS5+1G→A</td>
</tr>
<tr>
<td>4</td>
<td>ALK4</td>
<td>G152fs</td>
</tr>
<tr>
<td>5</td>
<td>ALK5</td>
<td>G270R</td>
</tr>
<tr>
<td>6</td>
<td>ALK6</td>
<td>IVS1-1G→A</td>
</tr>
<tr>
<td>7</td>
<td>ALK7</td>
<td>G152fs</td>
</tr>
<tr>
<td>8</td>
<td>ALK8</td>
<td>G270R</td>
</tr>
<tr>
<td>9</td>
<td>ALK9</td>
<td>IVS5+1G→A</td>
</tr>
<tr>
<td>10</td>
<td>ALK10</td>
<td>G270R</td>
</tr>
<tr>
<td>11</td>
<td>ALK11</td>
<td>G161R</td>
</tr>
<tr>
<td>12</td>
<td>ALK12</td>
<td>G152fs</td>
</tr>
<tr>
<td>13</td>
<td>ALK13</td>
<td>G152fs</td>
</tr>
<tr>
<td>14</td>
<td>ALK14</td>
<td>G152fs</td>
</tr>
<tr>
<td>15</td>
<td>ALK15</td>
<td>G161R</td>
</tr>
<tr>
<td>16</td>
<td>ALK16</td>
<td>G161R</td>
</tr>
<tr>
<td>17</td>
<td>ALK17</td>
<td>P230S</td>
</tr>
</tbody>
</table>

Table 2 Genotypes of all analysed AKU patients from 15 families indicating identified disease causing mutations within the HGO gene

Table 1 List and frequencies of the mutations identified in 32 AKU chromosomes from Slovak patients. Positions of nucleotide changes are related to the transcription start site as described in Granadosino et al. (Human HGO transcript: AF 045167; the ATG initiation codon is located at position c168)

<table>
<thead>
<tr>
<th>Mutation Type</th>
<th>Nucleotide change</th>
<th>No and % of chromosomes (out of 32)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS 1 G→A</td>
<td>Splice site</td>
<td>c183G→A</td>
<td>3 (13.5%)</td>
</tr>
<tr>
<td>N 47 L</td>
<td>Missense</td>
<td>c307C→T</td>
<td>3 (13.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present report</td>
<td></td>
</tr>
<tr>
<td>IVS 5+1 G→A</td>
<td>Splice site</td>
<td>c590G→A</td>
<td>2 (8.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present report</td>
<td></td>
</tr>
<tr>
<td>G 152 fs</td>
<td>Frameshift</td>
<td>c621insG</td>
<td>8 (25%)</td>
</tr>
<tr>
<td>G 161 R</td>
<td>Missense</td>
<td>c648G→A</td>
<td>8 (25%)</td>
</tr>
<tr>
<td>P 230 S</td>
<td>Missense</td>
<td>c855C→T</td>
<td>2 (6.5%)</td>
</tr>
<tr>
<td>G 270 R</td>
<td>Missense</td>
<td>c975G→A</td>
<td>4 (12.5%)</td>
</tr>
<tr>
<td>V 300 G</td>
<td>Missense</td>
<td>c1066T→G</td>
<td>3 (12.5%)</td>
</tr>
<tr>
<td>P 370 fs</td>
<td>Frameshift</td>
<td>c1273insC</td>
<td>5 (15.625%)</td>
</tr>
</tbody>
</table>

shortening of translated HGO protein from 445 to 373 amino acids.

The novel mutations were not identified in any of the 50 healthy controls, supporting the evidence that they are disease causing mutations, rather than polymorphisms.

Segregation of all mutations with AKU was confirmed in all families, except for the S47L mutation, where no DNA from family members was available (fig 4). However, serine at position 47 of the HGO protein molecule is conserved in man and mouse (fig 3). In *Aspergillus nidulans*, threonine is found at this site, which, as well as serine, belongs to the group of hydrophilic amino acids with uncharged polar side chains that are usually on the outside of the protein. Conversely, leucine, which is introduced into the HGO protein by transition c307C→T, is an amino acid with non-polar side chains that tend to cluster together on the inside of proteins. This indicates that substitution S47L may influence the HGO protein conformation and therefore also affect its function.

Recently, Beltran-Valero de Bernabé et al.9 provided the evidence that the CCC triplet or its inverted complement (GGG) are mutational hotspots in the HGO gene, because 34.5% (10/29) of HGO nucleotide changes identified so far involve these sequence motifs. Data shown in our report further support their finding, since 55.5% (5/9) of the mutations identified in our patients lie within or are adjacent to these triplets. Taking into account the novel mutations found in Slovak patients and one identified by Felbor et al.10 the total number of HGO nucleotide variations involving the CCC/GGG motif identified so far can be increased to 38.2% (13/34).

In all 17 analysed Slovak AKU patients, both disease causing mutations were found (table 2). The identification of nine different mutations in this sample was not expected.
because the founder effect had been considered to be the main reason responsible for an increased incidence of AKU in Slovakia. The most frequent mutations, G161R and G152fs (previously identified in two Slovak families by Gehrig et al.), were present on 50% of 32 screened AKU chromosomes (table 1). So far, these mutations have not been identified in any other screened population. This indicates that they might be specific for Slovakia. The high proportion of these two mutations can be explained by founder effect and subsequent genetic isolation. In addition, however, there must have been at least four other founders contributing to the gene pool of the Slovak AKU population (1:19 000).

Possible common origins of chromosomes carrying the same AKU mutations can be further traced by the analysis of DNA polymorphisms in the \textit{HGO} gene and construction of haplotypes. This work is now in progress.

\textbf{Figure 3} Comparison of primary structure of homogentisate-1,2-dioxygenase protein from man (\textit{HGO}, AF000573), mouse (\textit{MHGO}, U58988), and \textit{Aspergillus nidulans} (\textit{HMGA}, U30797) using ClustalX 1.3b. Positions conserved in all three organisms are indicated by (*). Arrows mark sites of identified missense mutations, novel mutations are shown in bold.

\textbf{Figure 4} Non-radioactive SSCP analysis of exon 13 indicating segregation of mutation P370fs in family ALK5. Arrows mark the SSCP shifts corresponding to this mutation. The presence of the mutation in heterozygous state is indicated by (*). Patients were also heterozygous for mutation G270R (exon 11) (table 2).
Clinical and molecular correlates of somatic mosaicism in neurofibromatosis 2

Editor—Neurofibromatosis 2 (NF2) is an autosomal dominant disorder that is characterised by benign nervous system tumours (such as vestibular schwannomas (VSs), intracranial meningiomas, and spinal tumours) and other abnormalities.1 Somatic mosaicism (the presence of a mutation, deletion, or chromosomal abnormality in a subpopulation of somatic cells) is thought to be relatively common in NF2, affecting perhaps 15% of sporadic cases.2 3 There can be considerable clinical variability in mosaics because somatic mutation can occur at different stages of the postzygotic cell lineage. Evans et al reported the degree of mosaicism for five NF2 patients. Two patients with an estimated <10% of peripheral lymphocytes with NF2 mutations had ages of onset of symptoms of 41-48 years, while three patients with an estimated 21-44% of affected cells had ages of onset of symptoms of 21-28 years. This is consistent with a relationship between degree of mosaicism and disease severity, although there are too few patients to draw firm conclusions.

Few NF2 somatic mosaics have been reported, and clinical and molecular differences between mosaics and sporadic non-mosaic NF2 patients have not been quantified. To examine this question, we compared somatic mosaic and sporadic non-mosaic NF2 patients selected from NF2 populations in the United Kingdom (341 patients)4 5 and Germany (118 patients).6 7 The study groups included 13 previously identified somatic mosaics3 and 86 sporadic non-mosaic NF2 patients, all of whom had head and spine gadolinium enhanced magnetic resonance imaging. Sporadic NF2 patients were defined as non-mosaic if they had identified germline NF2 mutations with normal strength gel bands. In theory, somatic mosaic patients could have near normal band strength, but in practice band strength will be reduced when <50% of peripheral lymphocytes have NF2 mutations.2 Clinical data were not available in sufficient detail to determine if the distribution of lesions was non-uniform, which could result from somatic mosaicism.

The covariates that were examined were age at onset of symptoms, age at diagnosis, number of VSs (none or unilateral versus bilateral), presence and number of intracranial meningiomas, presence of spinal tumours, and germline NF2 mutation type (frameshift or nonsense versus other identified mutations). In univariate analyses, the two tailed test was used for continuous variables and the two tailed Fisher exact test for binary variables. Multiple logistic regression was then used to examine the association between somatic mosaic status and covariates that differed between groups; interaction terms of age with number of tumours were also considered.

The characteristics of somatic mosaics and sporadic non-mosaics are compared in table 1. Age at onset of

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Somatic mosaic</th>
<th>Sporadic non-mosaic</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td>13</td>
<td>86</td>
</tr>
<tr>
<td>Age at onset of symptoms, years, mean (SE)</td>
<td>26.5 (2.4)</td>
<td>18.7 (1.1) 0.012</td>
</tr>
<tr>
<td>Age at diagnosis, years, mean (SE)</td>
<td>33.6 (2.7)</td>
<td>24.7 (1.3) 0.013</td>
</tr>
<tr>
<td>Germline mutation type (%)</td>
<td>0.055</td>
<td>0.055</td>
</tr>
<tr>
<td>Frameshift or nonsense</td>
<td>92.3</td>
<td>62.8</td>
</tr>
<tr>
<td>Other</td>
<td>7.7</td>
<td>37.2 0.391</td>
</tr>
<tr>
<td>Vestibular schwannomas (%)</td>
<td>30.0</td>
<td>12.9</td>
</tr>
<tr>
<td>None or unilateral</td>
<td>30.0</td>
<td>12.9</td>
</tr>
<tr>
<td>Bilateral</td>
<td>70.0</td>
<td>87.1 0.733</td>
</tr>
<tr>
<td>Spinal tumours (%)</td>
<td>0.38</td>
<td>2.4</td>
</tr>
<tr>
<td>Absent</td>
<td>69.2</td>
<td>75.6 0.773</td>
</tr>
<tr>
<td>Present</td>
<td>46.2</td>
<td>41.9</td>
</tr>
<tr>
<td>Intracranial meningiomas (%)</td>
<td>1.5 (1.0)</td>
<td>1.5 (0.2) 0.993</td>
</tr>
</tbody>
</table>

symptoms, age at diagnosis, and the distribution of germ-line NF2 mutation types were significantly different between the two groups. On average, somatic mosaics were 7.8 years younger than non-mosaics at onset of symptoms (p=0.012) and 8.9 years younger at diagnosis (p=0.013). Nonsense or frameshift mutations were identified in 92.3% of somatic mosaics, compared to 62.8% of non-mosaics (p=0.055). The prevalence of no VSs or unilateral VSs was higher in mosaics than in non-mosaics (30.0% versus 12.9%), but this difference was not statistically significant. The prevalence and number of other central nervous system tumours were similar in the two groups.

Since age at onset of symptoms and age at diagnosis were highly correlated (r²=0.65, p=0.001), age at diagnosis was used in the multiple logistic regression model because tumour burden was evaluated at diagnosis. In the multiple logistic regression model, age at diagnosis and germ-line NF2 mutation type were significantly associated with somatic mosaic status and number of VSs was of marginal statistical significance. Interaction terms were not statistically significant. Patients with frameshift or nonsense mutations had 23.1-fold greater odds of somatic mosaicism than patients with other types of identified mutations (95% confidence interval 1.7-316.4, p=0.019). This may be a bias that results from milder disease in somatic mosaic patients and more severe disease in NF2 patients with nonsense or frameshift mutations, so that somatic mosaic NF2 patients with nonsense or frameshift mutations are more likely to be clinically detected as having NF2.

The odds of somatic mosaicism increased 11.1-fold per decade increase in age at diagnosis (95% confidence interval 10.3-11.8, p=0.004). Patients with no VSs or unilateral VSs were 7.1-fold more likely to be mosaic (95% confidence interval 1.0-53.7, p=0.056). Considering two sporadic NF2 patients (one 40 years old at diagnosis with a unilateral VS and another 20 years old at diagnosis with bilateral VSs, both with non-truncating mutations), the former patient has 157.6-fold greater odds of being a somatic mosaic than the latter patient.

This study is based on relatively few mosaic patients, but if substantiated by other studies, these findings may be a useful adjunct in identifying somatic mosaics. For example, sporadic NF2 patients who are >40 years old at diagnosis with no VSs or unilateral VSs could be evaluated for somatic mosaicism. This is an unusual clinical presentation in NF2, occurring less frequently than the estimated 15% prevalence of somatic mosaicism in sporadic NF2 cases. In the United Kingdom NF2 patient series, nine of 206 sporadic patients (4.4%) meet this description. These patients include only one previously identified somatic mosaic; the rest have unidentified germline NF2 mutations. The eight patients with unidentified mutations have ages at onset of symptoms ranging from 29-45 years (median 36 years) and ages at diagnosis ranging from 42-59 years (median 48 years). We are currently analysing tumours from these patients to determine the proportion that are mosaic.

We thank the NF2 patients and their families for participating and Drs L Kluew, V F Mautner, and J M Friedman for helpful comments.

M E BASER*
A J WALLACE†
T STRACHANE‡
D G R EVANS†

*11746 Bellagio Road, No 308, Los Angeles, CA 90049, USA
†Department of Medical Genetics, St Mary’s Hospital, Manchester, UK
‡University Department of Human Genetics, University of Newcastle upon Tyne, UK

Correspondence to: Dr Baser, baser@earthlink.net

Many ΔF508 heterozygote neonates with transient hypertrypsinaemia have a second, mild CFTR mutation

Editor—Mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene have an extremely wide phenotypic spectrum. The “classical” severe form of cystic fibrosis (CF) is characterised by pancreatic insufficiency and chronic endobronchial infection. Milder forms may show pancreatic insufficiency, though the degree of pulmonary involvement varies. Several other pathologies have now been linked with mutations in the CFTR gene, including congenital bilateral absence of the vas deferens, liver disease, pancreatitis, and disseminated bronchiectasis.

There are now over 850 documented mutations in the CFTR gene. The most common is ΔF508, which appears on 66% of CF chromosomes in western Europe. The pancreatic status of patients has a strong correlation to the genotype, whereas the severity of lung disease shows little or no relation to genotype. Generally, mutations that result in no CFTR protein, such as truncating mutations, or those, such as ΔF508, which result in mislocalisation of the protein, result in a severe phenotype with pancreatic insufficiency. Missense mutations, particularly in the transmembrane domains, result in a milder, more variable disease.

The sweat test, long regarded as the gold standard diagnostic test for cystic fibrosis, may give normal results in these milder forms. Neonatal screening for CF relies on an increased immunoreactive trypsinogen (IRT) concentration in blood of affected babies during the first two months of life. However, this method has low specificity, particularly with samples taken in the first week of life, so mutation analysis is increasingly being used as a second tier. In the Trent region of the United Kingdom (UK), where ΔF508 accounts for over 80% of CF mutations, we currently use a three stage IRT-DNA-IRT protocol, which has a low requirement for second blood samples and for sweat testing. Any initial blood sample with IRT readings above the threshold is resampled at 27 days; if the IRT level is again above the threshold the child is referred for sweat testing. The families of heterozygous neonates
with a second IRT level below the threshold are referred for genetic counselling on the assumption that such neonates are unaffected carriers.

It has previously been shown that neonates with transient hypertrypsinaemia carry the ΔF508 mutation at a higher frequency than the general population. Additionally, IRT remains on average higher in the repeat blood sample in babies who are heterozygous for ΔF508 than in non-ΔF508 babies. Thus, it is possible that a proportion of infants with transient hypertrypsinaemia and ΔF508 may have a second (mild) CF mutation. We have examined this hypothesis in a cohort of infants assessed through the Trent (UK) neonatal screening programme.

A cohort of 88 ΔF508 heterozygous neonates with transient hypertrypsinaemia born between April 1991 and November 1996 were available for testing. All had exceeded the IRT cut off value for the 6th day blood sample (usually 90 ng/ml but adjusted periodically to select approximately 0.5% of tested babies) and had an IRT concentration below 80 ng/ml in the 27th day sample. Cases with meconium ileus were excluded. There was a sample concentration below 80 ng/ml in the 27th day sample. Cases with meconium ileus were excluded. There was a sample

Table 1 CFTR primers, PCR and SSCP analysis conditions

<table>
<thead>
<tr>
<th>Region amplified</th>
<th>Primer sequence</th>
<th>Anneal temp (°C)</th>
<th>Product size (bp)</th>
<th>Enzyme digest</th>
<th>SSCP conditions % glycerol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>F 5' - GCC AAA TGA CAT CAC AGC AGG - 3'</td>
<td>61</td>
<td>211</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Exon 2</td>
<td>R 5' - TGT CCT TCC GAA CGT CGG TTG - 3'</td>
<td>56</td>
<td>203</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Exon 3</td>
<td>F 5' - CCT TGG TTA ATC TGG CA - 3'</td>
<td>55</td>
<td>309</td>
<td>MboI</td>
<td>2</td>
</tr>
<tr>
<td>Exon 4</td>
<td>R 5' - ATT CAC CAG ATT TCG ATG TC - 3'</td>
<td>56</td>
<td>212</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Exon 6</td>
<td>F 5' - GAA AGT CTA CCA TGA TAA ACG TAT - 3'</td>
<td>58</td>
<td>230</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 7</td>
<td>R 5' - GAC AGT CTA CCA TGA TAA ACG TAT - 3'</td>
<td>56</td>
<td>285</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 8</td>
<td>F 5' - TAC TAA ATG GGG CCT TTT GAA ACC - 3'</td>
<td>58</td>
<td>275</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 9</td>
<td>R 5' - TGC TCC AGG AGA AGA ATC ACC CA - 3'</td>
<td>56</td>
<td>223</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Exon 10</td>
<td>F 5' - GAG GAA TTA TTT GAG AAA GC - 3'</td>
<td>55</td>
<td>560</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Exon 11</td>
<td>R 5' - AGA GTG TAT TGT GGG TGA - 3'</td>
<td>55</td>
<td>258</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Exon 12</td>
<td>F 5' - GTG AAT CGA TGT GAC GAC CA - 3'</td>
<td>58</td>
<td>491</td>
<td>Nol/HinfI</td>
<td>2</td>
</tr>
<tr>
<td>Exon 13</td>
<td>R 5' - TCT GCT TGG TAG CAT GAG GAG GT - 3'</td>
<td>58</td>
<td>425</td>
<td>HincII</td>
<td>See text</td>
</tr>
<tr>
<td>Exon 14</td>
<td>F 5' - GCA CAA TGA GAG TCT GAG AAA AGC - 3'</td>
<td>60</td>
<td>426</td>
<td>HinfI</td>
<td>2</td>
</tr>
<tr>
<td>Exon 15</td>
<td>R 5' - AGT TCT CTG AGG TGG AAG GAC - 3'</td>
<td>53</td>
<td>280</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 16</td>
<td>F 5' - AGT CAG TTA GAG AAA ATG ATG TTG - 3'</td>
<td>56</td>
<td>285</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 17</td>
<td>R 5' - GGA AGA AAC GAA GCC ACC GAA CTG - 3'</td>
<td>58</td>
<td>230</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 18</td>
<td>F 5' - TCC AAC AAC GAA CAT AAC TCT TGT ACT GT - 3'</td>
<td>55</td>
<td>444</td>
<td>HincII</td>
<td>2</td>
</tr>
<tr>
<td>Exon 19</td>
<td>R 5' - GCT TGG GAG AAA TGA AAC CAC AAG C - 3'</td>
<td>58</td>
<td>239</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Exon 20</td>
<td>F 5' - GAG AGT CTA CCA TGA TAA ACG TAT - 3'</td>
<td>56</td>
<td>208</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 21</td>
<td>R 5' - GCT GGG AAC TTA ATC AAC TCT TGT - 3'</td>
<td>57</td>
<td>463</td>
<td>HincII</td>
<td>2</td>
</tr>
<tr>
<td>Exon 22</td>
<td>F 5' - GGA CAT CGG TCT TGG ACT GAC - 3'</td>
<td>57</td>
<td>463</td>
<td>HincII</td>
<td>2</td>
</tr>
<tr>
<td>Exon 23</td>
<td>R 5' - GAA ATC TGG TAC TGC TGT - 3'</td>
<td>56</td>
<td>254</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 24</td>
<td>F 5' - AAT AAG TAC TCA TGG TAC TGC TGT - 3'</td>
<td>58</td>
<td>454</td>
<td>HincII</td>
<td>2</td>
</tr>
<tr>
<td>Exon 25</td>
<td>R 5' - GAC AGT CTA CCA TGA TAA ACG TAT - 3'</td>
<td>58</td>
<td>454</td>
<td>HincII</td>
<td>2</td>
</tr>
<tr>
<td>Exon 26</td>
<td>F 5' - AGT TAG GAT TGA ATT TCT TCT TT - 3'</td>
<td>56</td>
<td>279</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 27</td>
<td>R 5' - AGA ATC TGG TAC TGT ACT GGC - 3'</td>
<td>56</td>
<td>279</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 28</td>
<td>F 5' - GAT TCT ACT GAA TGC TAC TGT ACT GT - 3'</td>
<td>58</td>
<td>239</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 29</td>
<td>R 5' - GGT GAC ATG AAA ATC TGT ACT GGC - 3'</td>
<td>60</td>
<td>250</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 30</td>
<td>F 5' - TGG TCA TAC CCC AAA CAT GAT TGT TTA TAA TTT AAC - 3'</td>
<td>60</td>
<td>208</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 31</td>
<td>R 5' - GCC AAA TGA CAT CAC AGC AGG - 3'</td>
<td>60</td>
<td>403</td>
<td>HincII</td>
<td>4</td>
</tr>
<tr>
<td>Exon 32</td>
<td>F 5' - GAG GAA TTA TTT GAG AAA GTG - 3'</td>
<td>62</td>
<td>289</td>
<td>RsaI</td>
<td>3</td>
</tr>
<tr>
<td>Exon 33</td>
<td>R 5' - TGG TCA TAC CCC AAA CAT GAT TGT TTA TAA TTT AAC - 3'</td>
<td>56</td>
<td>254</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 34</td>
<td>F 5' - ACA TGA AGG ACC TCC AAA TTA TTA TAA TTT AAC - 3'</td>
<td>56</td>
<td>201</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Exon 35</td>
<td>R 5' - TCC AAA GAA TGG CAC CAG TGT TTA TAA TTT AAC - 3'</td>
<td>57</td>
<td>463</td>
<td>HincII</td>
<td>2</td>
</tr>
<tr>
<td>Exon 36</td>
<td>F 5' - AAT AAC TGT ACG CAG TGT TTA TAA TTT AAC - 3'</td>
<td>58</td>
<td>454</td>
<td>HincII</td>
<td>2</td>
</tr>
<tr>
<td>Exon 37</td>
<td>R 5' - GAA ATC TGG TAC TGT ACT GGC - 3'</td>
<td>56</td>
<td>279</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 38</td>
<td>F 5' - AGT TAG GAT TGA ATT TCT TCT TT - 3'</td>
<td>56</td>
<td>279</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 39</td>
<td>R 5' - AGA ATC TGG TAC TGT ACT GGC - 3'</td>
<td>56</td>
<td>454</td>
<td>HincII</td>
<td>2</td>
</tr>
<tr>
<td>Exon 40</td>
<td>F 5' - GCC AAA TGA CAT CAC AGC AGG - 3'</td>
<td>60</td>
<td>477</td>
<td>HinfI</td>
<td>See text</td>
</tr>
<tr>
<td>Exon 41</td>
<td>R 5' - GTA TAC CCC AAA CAT GAT TGT TTA TAA TTT AAC - 3'</td>
<td>56</td>
<td>473</td>
<td>HinfI</td>
<td>2</td>
</tr>
<tr>
<td>Exon 42</td>
<td>F 5' - AAT AAC TGT ACG CAG TGT TTA TAA TTT AAC - 3'</td>
<td>62</td>
<td>477</td>
<td>DraI</td>
<td>2</td>
</tr>
<tr>
<td>Exon 43</td>
<td>R 5' - GAA ATC TGG TAC TGT ACT GGC - 3'</td>
<td>61</td>
<td>266</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Exon 44</td>
<td>F 5' - AGT TAG GAT TGA ATT TCT TCT TT - 3'</td>
<td>58</td>
<td>400</td>
<td>MboI</td>
<td>2</td>
</tr>
<tr>
<td>Exon 45</td>
<td>R 5' - TAA AGC TTA TAG GCT GTG ATG CTA - 3'</td>
<td>62</td>
<td>263</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Exon 46</td>
<td>F 5' - CAT GAG TAC TGT ATT GCG - 3'</td>
<td>63</td>
<td>263</td>
<td>None</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 2 Compound heterozygotes detected

<table>
<thead>
<tr>
<th>Domain and mutation type</th>
<th>Genotype</th>
<th>Exon 1st IRT</th>
<th>2nd IRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmembrane, missense</td>
<td>ΔF508/P67L</td>
<td>3</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117H</td>
<td>4</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117L</td>
<td>4</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117L</td>
<td>4</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R117L</td>
<td>4</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>ΔF508/F1052V</td>
<td>17b</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R106H6</td>
<td>17b</td>
<td>94</td>
</tr>
<tr>
<td>Transmembrane, nonsense</td>
<td>ΔF508/R75X</td>
<td>3</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R73X</td>
<td>3</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>ΔF508/R581X</td>
<td>14a</td>
<td>112</td>
</tr>
<tr>
<td>Regulatory, missense</td>
<td>ΔF508/F693L</td>
<td>13</td>
<td>109</td>
</tr>
<tr>
<td>Alternate splice site</td>
<td>ΔF508/3849+10KB C→T</td>
<td>i19</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>ΔF508/3849+10KB C→T</td>
<td>i19</td>
<td>112</td>
</tr>
</tbody>
</table>

None of these samples had the IVS8-5T variant sequence.
*These patients have presented with symptoms of lung involvement.

Table 2: Compound heterozygotes detected

None of these samples had the IVS8-5T variant sequence.

*These patients have presented with symptoms of lung involvement.

Table 2: Compound heterozygotes detected

None of these samples had the IVS8-5T variant sequence.

*These patients have presented with symptoms of lung involvement.

Figure 1: Distribution of immunoreactive trypsin concentrations in 27th day blood spots. The data from the non-ΔF508 sample have been normalised to the number of ΔF508/N samples.
described to define genotype-phenotype correlations. The missense mutation F693L is located in the regulatory domain of CFTR and was first identified in a young girl with AF508 on her other allele who was diagnosed with pancreatic insufficient cystic fibrosis.19

Three subjects had nonsense mutations which are normally associated with severe disease as they introduce a stop codon, leading to truncated, usually inactive, CFTR protein being transcribed. The 3849+10 kb C→T mutation, identified in two subjects in our cohort, activates a partially active, cryptic splice site within the intron that causes an 84 bp “exon” to be inserted, in frame, within exon 19.27 Homozygotes for this mutation usually have relatively mild lung disease, while compound heterozygotes may show pancreatic insufficiency and may have more severe lung disease. Compared to other neonatal metabolic screening tests, that for CF has a relatively low sensitivity; the more successful programmes detect approximately 90% of severe, “classical” CF.24 With the increasing recognition of milder forms of CFTR deficiency, and the tendency to use DNA analysis rather than the sweat test as the ultimate diagnostic arbiter, the perceived effectiveness of neonatal screening is being further eroded. Nevertheless, provided that the prime aim of the programme remains the detection of classical cystic fibrosis, in the way the term was understood 10 years ago, performance using either a two stage IRT method or one of the newer IRT-DNA protocols may be regarded as acceptable. The difficulties with DNA based protocols arise from the need to provide explicit counselling to families where the baby has been found to be heterozygous for AF508 but has given a normal sweat test or had a normal IRT concentration in a second blood sample. In most screening programmes more babies will fall into this group than will be diagnosed with classical cystic fibrosis (representative figures are given in reference 15). The present study shows that such babies, particularly the subgroup with IRT in the second blood sample >25 ng/ml, have a high likelihood of a second CFTR mutation. Should further testing of AF508 heterozygotes be restricted to mutations associated with a severe phenotype or should extended mutation analysis, at least in the higher risk group with second IRT >25 ng/ml, become part of routine investigation? Would such investigation improve the accuracy of counselling of such families?

The majority of compound heterozygotes detected in this study have mutations usually associated with milder forms of CFTR disease. However, some of our hypertrypsinaemic cohort have genotypes previously described to define genotype-phenotype correlations. The second blood sample >25 ng/ml, have a high likelihood of being diagnosed with cystic fibrosis, enabling them to be targeted forwards from their neonatal screening results. All have developed symptomatic respiratory infections associated with positive bacterial cultures. A prospective study is under way to determine the clinical spectrum present in such compound heterozygotes. It is generally agreed that diagnosing adult onset disease during childhood is undesirable if there is no effective preventive treatment. One would not normally wish to predict fertility problems in an otherwise healthy male neonate. However, in so far as early active treatment can reduce the impact of lung disease in moderate CFTR deficiency, previous warning that a child is thus predisposed would be valuable. Thus, the increased possibility of mild CF spectrum disease should be raised during counselling for AF508 heterozygosity detected on newborn screening. There may be a case for more active clinical follow up, particularly in the persistent mild hypertrypsinaemia group. However, until we are more confident in predicting outcome from genotype, the prospective identification of “milder” mutations should not be included in routine neonatal screening protocols.

The support of the Sheffield Children’s Hospital Research and Development Fund and the Cystic Fibrosis Trust (UK) is gratefully acknowledged.

JIM BOYNE* STEVE EVANS† RODNEY J POLLITT† CHRISTOPHER J TAYLOR‡ ANN DALTON*‡

*North Trent Molecular Genetics Service, Centre for Human Genetics, 117 Manchester Road, Sheffield S10 5DN, UK ‡Neonatal Screening Laboratory, Sheffield Children’s Hospital, Western Bank, Sheffield S10 2TH, UK †University Department of Paediatrics, Sheffield Children’s Hospital, Western Bank, Sheffield S10 2TH, UK

8 http://www.genet.sickkids.on.ca/cftr/
Further evidence for genetic heterogeneity of autosomal dominant disorders with accumulation of multiple deletions of mitochondrial DNA

EDITOR—Disorders of oxidative phosphorylation are highly heterogeneous from both a clinical and a genetic point of view. The nuclear as well as the mitochondrial genomes contain genes that are necessary for respiratory chain function. Consequently, different modes of inheritance are encountered in disorders of oxidative phosphorylation.

Single large scale deletions of mitochondrial DNA (mtDNA) usually occur in sporadic cases. However, multiple deletions of mtDNA also occur in autosomal dominant disorders. These deletions are generated de novo as somatic mutations in each affected subject. The nuclear gene defects predisposing to secondary mtDNA deletions in these patients remain unknown.

The disorder discovered by Zeviani et al was later found in several families and was called autosomal dominant progressive external ophthalmoplegia (ADPEO), as ptosis and external ophthalmoplegia are the major clinical findings. More generalised weakness of the skeletal muscles and sudden unexpected death are also common clinical features. Additional variations vary among different families.

Linkage analysis provided direct evidence for genetic heterogeneity of ADPEO. One locus predisposing to ADPEO in a Finnish family was assigned to chromosome 10q23.3-q24.3. Another locus was assigned to chromosome 3p14.1-p21.2 in three Italian families. In another Italian ADPEO family the disorder is linked to chromosome 4q34-q35.

We previously reported three unrelated Belgian families with progressive external ophthalmoplegia and multiple deletions of mtDNA. Only one of these families was of sufficient size to examine cosegregation of PEO with the known loci on chromosomes 10q, 3p, and 4q.

Fig 1 shows the updated pedigree of the Belgian PEO family. Several male to male transmissions indicate clear autosomal dominant inheritance. The diagnosis of ADPEO was based on the clinical symptoms and the presence of multiple mtDNA deletions on Southern blots of muscle biopsy specimens in two patients. The detailed clinical features and the muscle biopsy findings with mtDNA analysis have been described elsewhere.

Blood samples were obtained after informed consent. The primer sequences for the polymorphic DNA markers on chromosomes 3, 4, and 10 were obtained from the Genome Database (http://gdbwww.gdb.org). The linkage analysis was carried out by MLINK 5.1 using a disease gene frequency of 1/10 000. Since variable penetrance of the disease was shown in the 10q linked Finnish family, only affected subjects were included in our linkage analyses. Subjects were considered affected when clinical examination showed PEO and absent Achilles tendon reflexes (fig 1). Dead, but not clinically examined subjects were considered affected if there was a positive family history obtained from relatives and the appearance of PEO in photographs.

The average expected maximum lod score in computer simulation analysis was 1.5, assuming a 80% informative linked marker at 5% recombination distance from the PEO gene. In 500 simulated replicates, the maximum lod score obtained was 3.60. Linkage analysis excluded all three known loci (table 1). Few markers generated minor positive lod scores (Z) of 0.5 to 1 at large recombination distances (θ), but flanking markers and haplotype analysis clearly excluded the candidate regions.

Our data provide further evidence for the genetic heterogeneity of autosomal dominant PEO, indicating that...
The pedigree of our patients is showed in fig 1. When last examined, the affected two children, III.4 and III.5, were 3 years and 1 year old, respectively. Their older sister, III.3, was aged 6 and was thought to be unaffected. The affected mother, II.2, was 33 and her husband, II.3, 36 years old and had normal mental development and physical examination.

We report on a mother and two sons whose clinical and radiological features closely resemble those of Liebenberg syndrome.

The pedigree of our patients is showed in fig 1. When last examined, the affected two children, III.4 and III.5, were 3 years and 1 year old, respectively. Their older sister, III.3, was aged 6 and was thought to be unaffected. The affected mother, II.2, was 33 and her husband, II.3, 36 years old and were healthy and non-consanguineous. The mother's parents, I.1 and I.2, were said to be unaffected.

Patient III.5 was born at term. Pregnancy and delivery were uneventful. Birth weight was 3800 g, length 50 cm, and head circumference 35 cm. His development mile-
stones were normal. At 1 year he was able to sit alone and spoke his first words. There were no health problems. His joint anomalies were noticed at birth.

We examined the patient at the ages of 6 months and 1 year. At 1 year weight was 12 kg (>90th centile), height 80.6 cm (>97th centile), and OFC 47 cm (>50th centile). In the “anatomical position”, the elbow joints were slightly flexed and active extension from that position was not possible. Pronosupination was slightly limited. The wrist joints were radially deviated. Flexion, extension, abduction, and adduction at the wrists were somewhat stiff but almost normal in range. The fingers were short and bilateral camptodactyly of the fifth finger was present.

X-rays of the arms, forearms, and hands showed enlarged and poorly modelled distal humeral, proximal radial, and proximal ulnar metaphyses, abnormally long radius and ulna, a very large triquetrum the size of that of a 3½ year old child, and shortness of all the components of the digital rays, but especially marked in the distal phalanges (fig 2). No synostoses were noted. X-rays of the whole skeleton showed no other relevant anomalies.

Patient III.4 was born at term. Pregnancy and delivery were uneventful. Birth weight was 3400 g, length 45 cm, and head circumference 35 cm. Development milestones were normal. He was able to sit alone at 9 months and to walk at 12 months. He spoke his first words at 12 months and the first sentences at 2 years. He had no health problems. His joint anomalies were noticed at birth.

We examined the patient at the ages of 2½ and 3 years. At 3 years weight was 18.5 kg (>97th centile), height was 106 cm (>97th centile), and OFC was 49.6 (>25th centile). Flexion at the elbow joints, radial deviation of the wrists, and limitation in the range of movement at the elbow and wrist joints were slightly more marked than in his younger brother. Brachydactyly, bilateral camptodactyly of the fifth fingers and partial bilateral syndactyly between the second and third fingers were evident. The x-ray features were very similar to those of III.5. The size of the triquetrum was that of an 8 year old child (fig 3). His symptoms improved after one year of physiotherapy.

The mother, II.2, was 33 years old at the time of examination. Weight was 60 kg (>50th centile), height was 165 cm (>50th centile), and OFC was 53 cm (>25th centile). She denied any health problems and was of normal intelligence. Her joint anomalies had been present since birth and she had not noticed any worsening of her symptoms. She had never received any rehabilitation therapy.
In the anatomical position, flexion at the elbow joints was 10° and active extension from that position was impossible (fig 4). Pronosupination was slightly limited. The wrist joints were radially deviated. At the wrist, flexion was limited to about 60° while extension, abduction, and adduction were almost normal. The hands showed brachydactyly and bilateral camptodactyly of the fifth finger (fig 5).

X-rays of the arms, forearms, and hands showed enlarged and poorly modelled distal humeral, proximal radial, and proximal ulnar metaphyses, abnormally shaped carpal bones, scaphoid-lunate fusion, large triquetrum, and shortness of all the components of the digital rays, especially marked at the distal phalanges (figs 6 and 7). No synostoses were present. X-rays of the whole skeleton showed no other relevant anomalies.

The unusual association of brachydactyly, abnormally shaped carpal bones, and elbow dysplasia in our family and...
that described by Liebenberg in 1973 could be ascribed to the same autosomal dominant clinical condition. Our patients showed only some slight differences from Liebenberg's family.

In our family, the bony components of the elbow joints were consistently enlarged and poorly modelled. In Liebenberg's patients the radial head had a "bulbous appearance" while the humeral condyles and the ulnar olecranon and coronoid processes were "underdeveloped". The large triquetrum and camptodactyly of the fifth fingers, which were described only in the 7 year old child of the family of Liebenberg, were constant findings in our patients. Moreover, patient III.4 had bilateral partial syndactyly between the second and third fingers. Triquetro-pisiform fusion, which was present in all Liebenberg's patients, was not found in our family. However, since the ossification centre of the pisiform appears at about 10 years, triquetro-pisiform fusion would not be expected to be seen in the children III.4 and III.5. Yet, in the mother, II.2, the fusion is between the scaphoid and lunate.

The differential diagnosis between Liebenberg syndrome and the other skeletal disorders involving elbow dysplasia/carpal synostoses and brachydactyly, such as the multiple synostoses or facioaudiosymphalangism syndrome and the Banki syndrome, is not a feature of Banki syndrome. The recent discovery that point mutations in the NOG gene in the 17q22 region are the cause of both proximal symphalangism (SYM1) and SYNS1 raises the question of whether Liebenberg syndrome is also caused by mutations in the same gene. The NOG gene codes for the polypeptide noggin that acts as an inhibitor of bone morphogenetic proteins (BMP), which are members of the transforming growth factor β superfamily of signalling proteins (TGFβ-FM). Thus, mutations in the NOG gene are likely to cause an increased BMP activity which leads to excess cartilage and failure of joint formation. Considering the wide variability of the phenotypic effects of NOG gene mutations, which range from simple symphalangism to the full SYNS1 syndrome, it would not be surprising if Liebenberg syndrome and some of the other syndromes featuring synostoses were also caused by NOG gene mutations.

Inherited disorders of the skeleton: 3 Beighton P.

Prenatal detection of trisomy for the entire long arm of chromosome 7

EDITOR—Duplication of the long arm of chromosome 7 is extremely rare; most of the reported cases are partial trisomies. The first and only previous case of complete 7q duplication was reported in 1978 by Wahrman et al, who described a proband at 3 years of age with a phenotype including a large face with sloping forehead, downward slanting palpebral fissures, bilateral epicantthic folds, low set, malformed ears, short neck, and genitourinary and renal anomalies. Here we report a case of duplication of the whole of 7q with phenotypic characteristics similar to most reported cases of partial trisomy 7q, which include frontal bossing, low set, malformed ears, micrognathia, hypertelorism, and skeletal abnormalities. The extent of the duplication and verification of breakpoints were determined using FISH probes.

The recent discovery that point mutations in the NOG gene in the 17q22 region are the cause of both proximal symphalangism (SYM1) and SYNS1 raises the question of whether Liebenberg syndrome is also caused by mutations in the same gene. The NOG gene codes for the polypeptide noggin that acts as an inhibitor of bone morphogenetic proteins (BMP), which are members of the transforming growth factor β superfamily of signalling proteins (TGFβ-FM). Thus, mutations in the NOG gene are likely to cause an increased BMP activity which leads to excess cartilage and failure of joint formation. Considering the wide variability of the phenotypic effects of NOG gene mutations, which range from simple symphalangism to the full SYNS1 syndrome, it would not be surprising if Liebenberg syndrome and some of the other syndromes featuring synostoses were also caused by NOG gene mutations.

The patient was delivered by caesarian section at 34 weeks’ gestation to a G1, P0, 15 year old female. She was first seen at 33 weeks’ gestation when a sonogram showed multiple congenital anomalies including severe hydrocephalus, a two vessel umbilical cord, bowed femur, clubbed feet, and dilated kidneys.

At birth, the infant was cyanotic with Apgar scores of 3 and 4 at one and five minutes, respectively. She weighed 3000 g and was 41 cm long. Head circumference was 44 cm (average at 34 weeks’ gestation is 31.5 cm). Multiple congenital anomalies were noted in addition to those seen on sonogram and included contractures of both hands and feet, missing digits from the left hand,онтorted right hand, bilateral hip dislocation, low set, malformed ears, micrognathia, small mouth, high arched palate, hypertelorism, wide, beak-like bridge of the nose, increased intermammary distance, and pulmonary hypoplasia (fig 1). Mild to moderate tricuspid regurgitation was present. The infant was placed on a ventilator with 100% oxygen, but saturation did not improve. The infant died six hours after birth from respiratory failure.

At necropsy, additional congenital anomalies were noted, including a dilated, tortuous right ureter with kinking (fig 2). The lungs were markedly hypoplastic with dilated airways and apical blebs. The hydrocephalic brain contained about 500 ml of CSF in markedly dilated ventricles. The mesencephalic aqueduct was markedly stenotic.

Cytogenetic studies on percutaneous umbilical blood sampling (PUBS) obtained at 33 weeks’ gestation and cultured fibroblasts obtained from the umbilical cord at birth showed a duplication of the entire long arm of chromosome 7. This was confirmed by a FISH probe for the elastin gene at 7q11.2 (Oncor). Three copies of the FISH probes for the elastin gene and markers at 7q36 were present in each metaphase analysed, indicating that the patient was trisomic for chromosome 7q.

Dual labelled centromere probes for 7 (Oncor) and 15 (Vysis) identified two centromeres each, with the 15 centromere on the derivative chromosome, confirming 7q and 15p breakpoints. The patient’s karyotype was 46,XX,der(15)t(7;15)(q11.2;p11.2) (fig 3). The mother’s karyotype was normal, 46,XX; however, no sample was available from the father for analysis. A fibroblast cell line established from umbilical cord on the patient is available through Coriell Cell Repositories (Camden, NJ).

Of all previously reported cases of trisomy 7q, there has been only one reported case involving duplication of the entire long arm of chromosome 7; we report the second case. Trisomy 7q produces abnormalities affecting virtually every system in the body including the central nervous system, the face, the musculoskeletal system, the heart, and the genitourinary system, but the combination of specific malformations may vary among patients. Our case showed a number of features similar to the previously reported case of duplication of the whole of 7q by Wahrman et al1 including frontal bossing, hypertelorism, low set, malformed ears, short neck, downward slanting palpebral fissures, and skeletal and kidney abnormalities. The features in our case not reported by Wahrman et al1 include hydrocephalus, bilateral clubbing.

Figure 1 The patient showing the physical features including hydrocephalus, low set ears, microphtalmia, deformed hands and feet, hypertelorism, and small mouth.

Figure 2 Dilated, tortuous right ureter with kinking noted at necropsy.

Figure 3 Cytogenetics. (A) Partial karyotype of the patient chromosomes 7 and 15, with the duplicated 7q translocated onto the short arm of chromosome 15 (on far right). (B) FISH confirmation of 7q duplication with three sets of signals for elastin and marker probes, and (C) FISH centromeric probes for 15 (long arrow) and 7 (short arrow). The der(15) is on the far left (long arrow).
of the hands and feet, micrognathia, increased intermammary distance, and pulmonary hypoplasia.

The features in our case were also similar to those described in partial trisomies of 7q. The majority of reports of partial trisomy 7 result from a parental balanced translocation (reciprocal or insertion) or inversion 7. Clinical findings for duplications for 7q22q31, 7q31qter, and 7qter have been well accepted as having characteristic findings for duplications for 7q22q31, 7q31qter, and 7qter. The majority of reports of partial trisomy 7 result from a parental balanced translocation or crossing over involved deletion of another chromosome region owing to missegregation of a balanced translocation or crossing over.

Correspondence to: Dr Wenger, swenger@hsc.wvu.edu

Cockayne syndrome associated with low CSF 5-hydroxyindole acetic acid levels

EDITOR—Cockayne syndrome is a rare, clinically heterogeneous disorder, characterised by severe growth failure, cognitive impairment, characteristic facies, and photosensitivity. In the older patient the face has a characteristic aged appearance with sunken orbits, a relatively large, “beak-like” nose, and narrow mouth and chin. Both the central and peripheral nervous systems are involved in this neurodegenerative disorder with pigmentary retinopathy, delayed nerve conduction velocities, sensorineural hearing loss, progressive spasticity, and cerebellar involvement with dysarthria, tremor, and ataxia. The cerebral histopathological changes most commonly seen are patchy demyelination of the subcortical white matter and microscopic calcifications throughout the central nervous system. Calcification of the basal ganglia may be visible on CT scan.1,2 The diagnosis of Cockayne syndrome is made on clinical grounds in association with the failure of RNA synthesis in cultured fibroblasts or lymphoblastoid cells to recover to normal rates after UV-C irradiation.2,3 Inheritance is presumed to be autosomal recessive.1

Here we report a patient with Cockayne syndrome in whom cerebrospinal fluid 5-hydroxyindole acetic acid was markedly reduced. To date there are no reports of abnormalities of the cerebrospinal fluid neurotransmitters in association with Cockayne syndrome. This finding may provide insight into the pathogenesis of the central nervous system abnormalities. Furthermore we have described the
patient’s body composition in terms of resting energy expenditure, total body protein, fat, and bone mineral density which are relevant to management of the progressive cachexia associated with this disorder.

The proband, a 16 year old male, is the third child of consanguineous Sri Lankan parents and was born at term with a birth weight of 2722 g. His early expressive speech development was delayed, but gross and fine motor development were within normal limits. He initially presented at 8 years of age with tremor and poor motor coordination. A cerebral CT scan at that time was normal. He was re-evaluated at the age of 14 years. At this time he had an obvious intention tremor, gait ataxia, mild cognitive impairment, bilateral high tone sensorineural hearing loss, and poor growth. His parents reported extreme sun sensitivity, dry skin, and poor sweating in hot conditions.

On physical examination at 14 years, the proband had slightly sunken eyes, thin hair, and dry skin. His speech was slow and mildly dysarthric. His height, 136 cm, and weight, 32 kg, were both below the 3rd centile (50th centile for 9 years) and head circumference, 52.5 cm, was on the 2nd centile (50th centile for 8 years). He had normal secondary sexual characteristics. Neurological examination showed cerebellar dysfunction with a marked, coarse, irregular intention tremor with overshooting, slow fine finger movements, and heel-shin incoordination. His gait was broad based and unsteady with flexed posture and toe walking. Dystonic posturing of his left arm and fingers were noted intermittently. There was minimal involuntary movement at rest. Muscle tone and power were within normal limits. Deep tendon reflexes were brisk, but his plantar reflexes were downward. There was no clinical evidence of peripheral neuropathy. Examination of his cranial nerves showed saccadic hypermetria, but no nystagmus. The pupils were poorly reactive to light and he was unable to converge. On neuropsychological testing there were specific deficits in
short term memory, abstract reasoning, skills of generativity, and mental flexibility.

A repeat CT scan at 14 years of age showed generalised cerebral atrophy and calcification of the globus pallidus, which on MRI scan presented as decreased signal intensity of the globus pallidus (fig 1). In addition, there was atrophy of the cerebellum, temporal lobe structures, hippocampal formation, and brain stem. The pattern of myelination approximated that of a 12 month old child. Nerve conduction studies showed absent sensory action potentials and moderately slowed motor conduction (29 m/sec at the right common peroneal nerve). There was segmental demyelination and onion bulb formation on sural nerve biopsy.

Other investigations at this time included a full blood count, serum electrolytes, liver function tests, calcium, phosphorus, glucose, parathyroid hormone, copper, caeruloplasmin, 25-hydroxycalciferol, uric acid, cholesterol, triglycerides, thyroid function tests, vitamin A, vitamin D, and leptin. The resting energy expenditure measured by indirect calorimetry was 75% of the expected value for age, sex, height, and weight and referred for nutritional assessment. The resting energy expenditure based on age, sex, height, and weight was indicative of appropriate nutritional intake. Because of progressive weight loss, the proband was referred for nutritional assessment. The resting energy expenditure measured by indirect calorimetry was 75% of the predicted value, 3856 kJ/24 h, with a predicted resting energy expenditure based on age, sex, height, and weight for healthy children of 5135 kJ/24 h. The respiratory quotient was 0.89, indicative of appropriate nutritional intake.

Biochemical investigations

Biochemical investigations were normal. There were normal plasma phenylalanine levels and dihydropyridine reductase activity. In view of these findings a primary disorder of central serotonin metabolism was considered and the proband started treatment with 5-hydroxytryptophan, 1 mg/kg/day.

Over a two year period the dose of 5-hydroxytryptophan was gradually increased to 5 mg/kg/day. There was no obvious clinical improvement, but on the other hand, his cognitive function, tremor, and gait have not deteriorated and cerebral MRI scan showed no change. During this period, however, he developed a pigmentary retinopathy, lost 3 kg in weight, and his facial appearance came to resemble a “cachectic bird-nose dwarf” with sunken eyes (fig 2). Despite continued treatment with 5-hydroxytryptophan, cerebrospinal fluid levels of 5-hydroxyindole acetic on two further occasions have remained markedly low (0.02 and 0.03 µmol/l).

Clinical diagnosis of Cockayne syndrome

The clinical diagnosis of Cockayne syndrome was confirmed by survival studies of Epstein-Barr virus transformed B cells after irradiation with UVB (fig 3). These studies show that the proband’s cells were very sensitive to irradiation, with only 1% of cells surviving a dose of 100 J/sq m UVB. In comparison, the normal controls’ cells did not approach 1% survival until irradiated with doses of 250 J/sq m and over. To confirm the Cockayne phenotype further, the rate of RNA polymerase II transcription in the lymphoblastoid cells was compared with control lymphoblastoid cells. The constitutive incorporation of 14C-uridine over 90 minutes was found to be 64 ± 2% (n=4) of the control lymphoblastoid cells (after normalisation against thymidine incorporation). This is within the 40-70% range for Cockayne syndrome lines reported by Balajee et al, who also found that xeroderma pigmentosa cells had the same rate of RNA synthesis as controls.

Because of progressive weight loss, the proband was referred for nutritional assessment. The resting energy expenditure measured by indirect calorimetry was 75% of the predicted value, 3856 kJ/24 h, with a predicted resting energy expenditure based on age, sex, height, and weight for healthy children of 5135 kJ/24 h. The respiratory quotient was 0.89, indicative of appropriate nutritional intake.

Table 1 Clinical features previously reported in Cockayne syndrome and those seen in our patient

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>Reported in Cockayne syndrome*</th>
<th>Present in this patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset</td>
<td>3–5 y (100)1</td>
<td>8 y</td>
</tr>
<tr>
<td>Psychomotor development</td>
<td>25/27 (92)2</td>
<td>+</td>
</tr>
<tr>
<td>Delayed</td>
<td>50/131 (38)1</td>
<td>+</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>4/131 (5)3</td>
<td>+</td>
</tr>
<tr>
<td>Movement disorder</td>
<td>12/24 (51)1</td>
<td>+</td>
</tr>
<tr>
<td>Tremor</td>
<td>13/24 (51)1</td>
<td>+</td>
</tr>
<tr>
<td>Speech abnormality</td>
<td>2/131 (16)4</td>
<td>+</td>
</tr>
<tr>
<td>Gait abnormality</td>
<td>35/131 (27)2</td>
<td>+</td>
</tr>
<tr>
<td>Basal ganglia calcification</td>
<td>25/27 (92)1</td>
<td>+</td>
</tr>
<tr>
<td>Ophthalmological</td>
<td>21/47 (45)13</td>
<td>+</td>
</tr>
<tr>
<td>Pigmentary retinopathy</td>
<td>10/128 (8)2</td>
<td>+</td>
</tr>
<tr>
<td>Congenital cataracts</td>
<td>46/128 (36)1</td>
<td>–</td>
</tr>
<tr>
<td>Optic atrophy/hypoplasia</td>
<td>9/23 (39)2</td>
<td>–</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>27/128 (21)1</td>
<td>–</td>
</tr>
<tr>
<td>Inability to converge</td>
<td>3/24 (13)2</td>
<td>–</td>
</tr>
<tr>
<td>Unreactive pupils</td>
<td>3/24 (13)2</td>
<td>–</td>
</tr>
<tr>
<td>Hearing loss</td>
<td>47/78 (60)13</td>
<td>+</td>
</tr>
<tr>
<td>Dental caries</td>
<td>16/27 (59)13</td>
<td>+</td>
</tr>
<tr>
<td>Skin photosensitivity</td>
<td>36/128 (29)1</td>
<td>–</td>
</tr>
<tr>
<td>Skin photosensitivity</td>
<td>1/128 (0)1</td>
<td>–</td>
</tr>
<tr>
<td>Skin photosensitivity</td>
<td>24/131 (18)2</td>
<td>+</td>
</tr>
<tr>
<td>Growth failure</td>
<td>6/60 (10)13</td>
<td>+</td>
</tr>
</tbody>
</table>

*Number reported and percentage in brackets with reference.
The cause of death in the majority of cases of Cockayne syndrome has been secondary to inanition and thus attention to nutrition is essential to patient care and well being. Although our patient was always small for his age, he recently showed accelerated weight loss. In the setting of premature aging we predicted an increased metabolic rate, but, surprisingly, detailed energy expenditure studies indicated a lowered metabolic rate. This is similar in subjects with anorexia nervosa, whose resting energy expenditure is reduced when compared to healthy, aged matched controls. With re-feeding, however, the resting energy expenditure in anorexia nervosa subjects normalises, with concomitant increases in body weight. It would therefore appear possible to manage Cockayne syndrome patients with programmes that correct the energy deficits, documented by energy expenditure studies. Whether such strategies will prevent deterioration in nutritional status remains to be shown.

Total body protein measured by neutron capture analysis8 was low for age (65%) but above predicted for weight (112%), height (112%), and lean body mass (108%). Total body bone mineral density measured by dual energy x ray absorptiometry10 was on the 50th centile for age, 1.141 g/cm3. Total body fat tissue measured by dual energy x ray absorptiometry was 31.2%.

Our patient’s clinical features are consistent with the diagnosis of Cockayne syndrome (table 1). Diagnostic criteria include growth failure after normal or slightly low birth weight, neurological dysfunction with cerebral white matter involvement plus at least three of the following features: cutaneous photosensitivity, progressive pigmented retinopathy/cataracts, optic disc atrophy, miotic pupils or sensorineural hearing loss, dental caries, short stature, and a characteristic physical appearance of “cachectic dwarfism”. Atypical features in our patient include later age of onset of neurological signs, absence of dental caries, and only mild cognitive impairment. The diagnosis of Cockayne syndrome was supported by finding hypersensitivity to UV light in Epstein-Barr virus transformed lymphoblasts. The pathogenesis of Cockayne syndrome is poorly understood. The cells of patients with Cockayne syndrome are hypersensitive to the lethal effects of UV light because they have a defective subpathway of nucleotide excision repair known as “transcription coupled repair”. Cockayne syndrome is genetically heterogeneous. Two disease genes have been identified, CSB on chromosome 10q11 and the CSA gene maps to chromosome 5. Both proteins play an essential role in preferential repair of transcription blocking lesions from active genes. The CSB protein is a member of the SW12/SNF2 family of ATPases whose function is thought to involve remodelling of protein-DNA interactions, such as chromatin structure in different situations. The CSA gene encodes a “WD repeat” protein. A unique finding in our patient was very low cerebrospinal 5-hydroxyindole acetic acid and normal homovanillic acid levels on three separate occasions. The peripheral serotonin levels were normal. The metabolic pathways of 5-hydroxyindole acetic acid and homovanillic acid are shown in fig 4. The concentrations of 5-hydroxyindole acetic acid and homovanillic acid in the cerebrospinal fluid are thought accurately to reflect the turnover of catecholamine neurotransmitters. The low 5-hydroxyindole acetic acid, in association with normal tryptophan and homovanillic acid in the cerebrospinal fluid and normal peripheral serotonin, is suggestive of low brain serotonin turnover with normal dopamine turnover and may suggest a primary central serotonin deficiency, a selective serotoninergic tract degeneration, or an isolated central nervous system tryptophan hydroxylase deficiency. This finding in our patient may provide some insight into the mechanism of the neurological complications and the initiation of Cockayne syndrome given the putative roles of serotonin in control of movement and appetite. We treated our patient with 5-hydroxytryptophan (5 mg/kg/day) in an attempt to increase his cerebrospinal fluid 5-hydroxyindole acetic acid levels, with no change in levels observed. However, from a clinical point of view, he has had no further deterioration in cognitive or neurological function.

Figure 4 Synthetic and catabolic pathway of serotonin and dopamine. 5-hydroxyindole acetic acid is formed initially from tryptophan in a reaction catalysed by tryptophan hydroxylase to form 5-hydroxytryptophan (5HTP), which requires molecular oxygen and tetrahydrobiopterin (BH4) for its activity. 5-hydroxytryptophan is decarboxylated by pyridoxine dependent aromatic L-amino acid decarboxylase to form the active neurotransmitter serotonin. Serotonin is catabolised by monoamine oxidase to form 5-hydroxyindole acetic acid (5HIAA). Tyrosine is metabolised by tyrosine hydroxylase to L-dopa. Aromatic L-amino acid decarboxylase is also required for the decarboxylation of L-dopa to dopamine, which is then catabolised to homovanillic acid by monoamine oxidase and catechol O-methyl-transferase.

Letters

C J ELLAWAY†‡
A DUGGAN†§
V S FUNG‡
J W EARL§
R KAMATH‡
P G PARSONS**
J A ANTONY†‡‡
K N NORTH†‡‡

* Western Sydney Genetics Program, Royal Alexandra Hospital for Children, NSW, Australia
† Department of Paediatrics and Child Health, University of Sydney, NSW, Australia
‡ Department of Paediatrics and Child Health, University of New South Wales, Australia
§ Department of Paediatrics, Royal North Shore Hospital, Sydney, NSW, Australia
¶ Department of Paediatrics and Child Health, Royal North Shore Hospital, Sydney, NSW, Australia
†† Department of Paediatrics, Royal Alexandra Hospital for Children, NSW, Australia
‡‡ Department of Paediatrics, Royal Alexandra Hospital for Children, NSW, Australia

Correspondence to: Dr North, Department of Paediatrics, Royal Alexandra Hospital for Children, PO Box 3515, Parramatta, NSW 2124, Australia, KathyN@nch.edu.au

We would like to thank Dr P McVeagh, Department of Paediatrics, Royal Alexandra Hospital for Children, for referring this patient to the Neurogenetic Service. We would also like to thank Ms Jane Allen, Department of Nutrition and Dietetics, Royal Alexandra Hospital for Children, for performing the energy expenditure studies, Mr Nick Hayward for transforming our patient’s B cells, and Dr Adam Steinberg, Department of Radiology, Royal Alexandra Hospital for Children for interpreting the MRI findings.

Data availability

Total body bone mineral density measured by dual energy x ray absorptiometry was 31.2%.

Diagnostic criteria include growth failure after normal or slightly low birth weight, neurological dysfunction with cerebral white matter involvement plus at least three of the following features: cutaneous photosensitivity, progressive pigmented retinopathy/cataracts, optic disc atrophy, miotic pupils or sensorineural hearing loss, dental caries, short stature, and a characteristic physical appearance of “cachectic dwarfism”. Atypical features in our patient include later age of onset of neurological signs, absence of dental caries, and only mild cognitive impairment. The diagnosis of Cockayne syndrome was supported by finding hypersensitivity to UV light in Epstein-Barr virus transformed lymphoblasts. The pathogenesis of Cockayne syndrome is poorly understood. The cells of patients with Cockayne syndrome are hypersensitive to the lethal effects of UV light because they have a defective subpathway of nucleotide excision repair known as “transcription coupled repair”. Cockayne syndrome is genetically heterogeneous. Two disease genes have been identified, CSB on chromosome 10q11 and the CSA gene maps to chromosome 5. Both proteins play an essential role in preferential repair of transcription blocking lesions from active genes. The CSB protein is a member of the SW12/SNF2 family of ATPases whose function is thought to involve remodelling of protein-DNA interactions, such as chromatin structure in different situations. The CSA gene encodes a “WD repeat” protein. A unique finding in our patient was very low cerebrospinal 5-hydroxyindole acetic acid and normal homovanillic acid levels on three separate occasions. The peripheral serotonin levels were normal. The metabolic pathways of 5-hydroxyindole acetic acid and homovanillic acid are shown in fig 4. The concentrations of 5-hydroxyindole acetic acid and homovanillic acid in the cerebrospinal fluid are thought accurately to reflect the turnover of catecholamine neurotransmitters. The low 5-hydroxyindole acetic acid, in association with normal tryptophan and homovanillic acid in the cerebrospinal fluid and normal peripheral serotonin, is suggestive of low brain serotonin turnover with normal dopamine turnover and may suggest a primary central serotonin deficiency, a selective serotonergic tract degeneration, or an isolated central nervous system tryptophan hydroxylase deficiency. This finding in our patient may provide some insight into the mechanism of the neurological complications and the initiation of Cockayne syndrome given the putative roles of serotonin in control of movement and appetite. We treated our patient with 5-hydroxytryptophan (5 mg/kg/day) in an attempt to increase his cerebrospinal fluid 5-hydroxyindole acetic acid levels, with no change in levels observed. However, from a clinical point of view, he has had no further deterioration in cognitive or neurological function.

Figure 4 Synthetic and catabolic pathway of serotonin and dopamine. 5-hydroxyindole acetic acid is formed initially from tryptophan in a reaction catalysed by tryptophan hydroxylase to form 5-hydroxytryptophan (5HTP), which requires molecular oxygen and tetrahydrobiopterin (BH4) for its activity. 5-hydroxytryptophan is decarboxylated by pyridoxine dependent aromatic L-amino acid decarboxylase to form the active neurotransmitter serotonin. Serotonin is catabolised by monoamine oxidase to form 5-hydroxyindole acetic acid (5HIAA). Tyrosine is metabolised by tyrosine hydroxylase to L-dopa. Aromatic L-amino acid decarboxylase is also required for the decarboxylation of L-dopa to dopamine, which is then catabolised to homovanillic acid by monoamine oxidase and catechol O-methyl-transferase.
Unilateral lobar pulmonary agenesis in sibs

EDITOR—Pulmonary agenesis is an extremely rare congenital malformation which has been classified morphologically by the extent to which bronchopulmonary tissue is absent. Spencer described bilateral pulmonary agenesis, where complete absence of bronchi, (2) unilateral agenesis with (a) complete absence of bronchi, (b) rudimentary bronchus present but no pulmonary tissue, or (c) poorly developed main bronchus with poorly organised parenchyma, and (3) lobar agenesis. The incidence of this rare condition is not known. According to the calculations of Mardini and Parsons, it may range between 0.0034 and 0.0097%. Familial pulmonary agenesis is even more uncommon. We found only two published reports of affected sibs. One pair of sibs had agenesis of the right upper and middle lobes and the other pair suffered from bilateral agenesis.

The paucity of such observations prompts us to report another instance of pulmonary agenesis in a brother and a sister of healthy and non-consanguineous parents. The family history was unremarkable and both pregnancies were uneventful. The mother had no infections and denied any abuse of teratogenic substances. Chromosomes were not studied in either case.

The first child, a female, was delivered spontaneously at term with a birth weight of 3500 g. Birth length and head circumference were not recorded. The mother was 27 years old and the father 36 years old. At the age of 11 months she was admitted to hospital because of stridor and dyspnoea. The interpretation of the chest x ray was spontaneous pneumothorax on the left side with dextrocardia and compression atelectasis of the right upper lobe. Over the following years, she suffered from asthmatic bronchitis secondary to recurrent infections. Pychomotor development was within the normal range. Pulmonary re-evaluation at the age of 12 years, including bronchoscopy, showed a suspicion of partial agenesis of the right lung. At the age of 24 years her bronchial asthma deteriorated. Ten years later she was admitted to hospital because of decompensated cor pulmonale. Since then she has had repeated episodes of acute cardiopulmonary decompensation. She died at the age of 42 years following a further episode of decompensated cor pulmonale. Necropsy disclosed dextrocardia, agenesis of the middle lobe, aplasia of the upper lobe, and hypoplasia of the lower lobe of the right lung with hypoplasia of the right pulmonary artery.

The younger brother was born at term six years after his sister. Birth weight was 2980 g and length 48 cm. From early on, tachypnoea, dyspnoea, and feeding difficulties were noticed. Physical examination showed diminished breath sounds on the right upper side with the cardiac impulse shifted to the right side and a systolic heart murmur. Chest x ray (fig 1) showed no heart on the left side but a hypervoluminous left lung with prominent vasculature. The carina projected at the level of T6 and the right main stem bronchus seemed sharply cut off at its lower end. The right side was reduced in volume and seemed almost completely opacified except for a median lucency from herniated left lung. No skeletal abnormalities were visible. At the age of 7 months, he was treated for right sided pneumonia. Two months later he was admitted to hospital because of severe asthmatic bronchitis. There was a rapid deterioration leading to respiratory arrest. Necropsy disclosed agenesis of the right upper lobe, partial atelectasis of the remaining right lung, severe hypoplasia of the right pulmonary artery, dextrocardia, hypertrophy of the right atrium and ventricle, a patent foramen ovale, and a defect in the upper part of the ventricular septum. Furthermore, there was bilateral meatal ureteral stenosis with hydroureters and hydronephrosis, a small accessory spleen, and mild hydrocephalus internus.

In the review on agenesis of the lung by Gilbert and Opitz, approximately 200 patients with unilateral involvement were found. In 70% of cases the left side was involved and males predominated over females. Associated malformations were present in 50% of the cases. Major anomalies included congenital heart defects, spinal anomalies, anal atresia, tracheo-oesophageal atresia, spleen anomalies, diaphragmatic hernia, renal anomalies, cleft palate, and limb and facial defects. Cunningham and Mann found that ipsilateral anomalies of the first and second branchial arch or radial ray defects or both are the most common overt malformations. In contrast to bilateral agenesis of the lung, unilateral absence is compatible with life, but has a high mortality, most likely because of the presence of associated malformations/infections of the remaining lung tissue. Infants with right sided lung agenesis have a higher mortality and die significantly earlier. This is probably related to a more severe mediastinal and cardiac displacement into the right chest. Survival to adult age is possible.
The aetiology of lung agenesis remains unknown. According to the possible associated anomalies, this rare malformation has been discussed as part of the VACTERL association and Goldenhar syndrome. Warkany et al. induced pulmonary agenesis of one lung, but also other major malformations of the eyes and cardiovascular and urogenital systems by maternal gestational vitamin A deficiency in rats. Chromosomes were not studied in the older reports. However, Say et al. described a patient with agenesis of the left lung who had a duplication of the region 2p21→p24 resulting in a partial trisomy 2p and Schober et al. reported a case with left pulmonary agenesis and associated malformations in partial trisomy 2p (p21→pter) and 21q (pter→q21) owing to an unbalanced segregation of a maternal reciprocal translocation t(2;21). The minimal overlapping region of duplication includes the segment 2p21→p24. Therefore, Say and Carpenter suggested studying patients with pulmonary agenesis for the presence of such a duplication. Unilateral agenesis has also been documented in trisomy 18 and in trisomy of a C group chromosome.

Pulmonary agenesis in twins was reviewed by Lehmann. In female monozygotic twins, one sister had agenesis of the left and the other agenesis of the right lung. Yount documented agenesis of the right lung in concordantly affected monozygotic twins, while others found pulmonary agenesis in only one of monozygotic twins. Concordant occurrence of congenital malformations in monozygotic twins does not necessarily imply a genetic cause and vice versa.

The only clear indication of possible autosomal recessive inheritance of unilateral pulmonary agenesis so far was the family reported by Brimblecombe. The healthy parents were first cousins and had two normal children and two affected girls with agenesis of the right upper and middle lobes. Our report is the second case of unilateral lobar pulmonary agenesis in sibs and supports the hypothesis of an autosomal recessively inherited disease. Alternatively, our observation could be explained by an extrinsic origin (infection during pregnancy, drugs, environmental substances, etc), for which, however, we do not have the slightest proof. Further support for the presence of a rare autosomal recessive gene for unilateral pulmonary agenesis comes from the observation of Mardini and Nyhan, who documented parental consanguinity in four patients; two patients had right upper and middle lobe agenesis and two presented with left sided pulmonary agenesis. All had associated congenital heart defects and three infants presented with abnormalities of the thumb. Podlech et al., who observed a family with one healthy and two affected children with bilateral agenesis of the lung, concluded that an autosomal recessive mode of inheritance could also be valid for bilateral pulmonary agenesis. Embryogenesis of human lung development is poorly understood, but in mice Fgf10 (fibroblast growth factor 10) is an important regulator of limb and lung formation. Homozygous Fgf10 deficient mice die at birth owing to lack of lung development.

In conclusion, our report suggests an autosomal recessive gene or genes which cause pulmonary agenesis with optional heart, kidney, and other defects. In such cases, a 25% recurrence risk should be considered in genetic counselling.

We are grateful to Dr U Willi for interpretation of the chest x ray.

SIV FOKSTUEN
ALBERT SCHINZEL
Institut für Medizinische Genetik, Universität Zürich, Rämistrasse 74, 8001 Zürich, Switzerland
Correspondence to: Professor Schinzel, schinzel@medgen.unizh.ch

Figure 1 Chest x ray of patient 2 showing an almost completely opacified right chest.
9 Heerup L. Case of absence of left lung. Hospitalstidende 1927;70:1165.

Correction

In the paper by Carroll et al in the February 1999 issue of the journal (J Med Genet 1999;36:94-6), the intronic polymorphism in PTEN was reported as IVS4+109InsACTAA. The correct sequence should be IVS4+109InsATCTT. The authors would like to apologise for any confusion caused by this error.