A missense mutation in both hMSH2 and APC in an Ashkenazi Jewish HNPCC kindred: implications for clinical screening

EDITOR—Colorectal carcinoma (CRC), among the most common neoplasms in humans, has a moderately large hereditary component. The two most frequent hereditary CRC syndromes are hereditary non-polyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP), both dominantly inherited disorders. HNPCC is caused by inherited defects in the DNA mismatch repair (MMR) genes hMLH1, hMSH2, PMS1, and PMS2; FAP is caused by mutations in the APC gene. Between 1 and 4% of all CRC fully satisfy the international criteria for HNPCC. In addition to CRC, these families also have an excess incidence of adenocarcinoma of the endometrium and to a lesser degree, cancer of the stomach, ovary, and other sites. Alterations in hMSH2 or hMLH1 account for 90% of the germline mutations detected in HNPCC. Mutations in hMSH6 have been described in CRC kindreds that resemble HNPCC but do not always fulfil the above mentioned criteria.

Familial adenomatous polyposis (FAP) accounts for less than 1% of CRC; it is characterised by the development of a large number (>100) of colorectal polyps, which, if untreated, will inevitably lead to CRC. The gene underlying FAP, APC, was identified in 1991; germline mutations truncating the APC gene product are usually found in FAP. An interesting missense variant in APC, I1307K, was discovered in a 39 year old man with eight colorectal polyps with a family history of colorectal polyps and CRC but not FAP. The T to A polymorphism at nt 3920 in APC was postulated to predispose to cancer, not as a direct effect of the protein, but by rendering its region of APC hypermutable. The mutation does not seem to be common in populations other than Ashkenazi Jews, where it is found at a frequency of 6.1%. Recently we have found the allele in a French Canadian kindred. The relative risk of CRC and other neoplasms associated with I1307K APC has been investigated. Woodage et al concluded that the cumulative risk of CRC among first degree relatives of CRC survivors among carriers compared to non-carriers was 1.9, although this was not statistically significant. By examining a cohort of unscreened Ashkenazi Jewish patients with colorectal carcinoma or adenomatous polyps, Gryfe et al found statistically significant (p=0.01) relative risks of colorectal neoplasia of 1.72 (95% confidence interval 1.13-2.61) and 1.48 (95% confidence interval 1.08-2.04) compared to controls from New York and Washington, DC, respectively. Recent investigations have indicated that I1307K APC is a candidate low penetrance breast cancer susceptibility allele, particularly in heterozygotes for germline mutations in BRCA1 or BRCA2. It is hoped that the identification of mutations in CRC susceptibility genes will result in decreased morbidity and mortality by the application of appropriate screening and intervention strategies. To this end, in an Ashkenazi Jewish kindred with HNPCC, we used single strand conformation analysis (SSCA) to search for mutations in MMR genes and an allele specific oligonucleotide hybridisation (ASOH) assay

![Pedigree of the MONT702 kindred. The age at death or the current age of the subjects are shown. +/A636P or +/+ presence of absence of exon 12 mutation in hMSH2; +/I1307K or +/+ presence or absence of I1307K variant in APC.](http://jmg.bmj.com/)

Supplied by The British Library - "The world's knowledge"
to identify I1307K APC. The proband (fig 1, II.11) was
seen both by the medical genetics and colorectal surgery
services and a family history was taken, identifying the
family as an Amsterdam criteria positive HNPCC kindred
(MON702). There are three relatives with CRC, two of the
affected subjects are mother and son, and two cases were
diagnosed at less than 50 years of age (II.13 and III.2).
Informed consent was received for blood donation as
approved by the institutional ethics committee. To assess
the occurrence of MSI in CRCs from two affected subjects,
six high sensitivity MSI markers (dinucleotide repeats
D2S123, D18S58, and LMS and mononucleotide repeats
BAT25, BAT26, and BAT40)14 15 were used to evaluate one
CRC sample from each patient. The proband’s tumour
DNA exhibited instability with three of the six microsatel-
lite markers (data not shown) and her son’s (III.2, fig 1)
tumour DNA showed alterations in allele length compared
to matched normal DNA with BAT25, BAT26, and
D18S58 (fig 2), defining both neoplasms as MSI' accord-
ing to established criteria.14 16 We then used PCR-SSCA to
analyse hMLH114 and hMSH214 for heterozygous
mutations. A mobility shift was identified in exon 15 of hMSH2
of genomic DNA amplified from two members of
MON702, II.3 and III.2. A germline heterozygous G to C
transversion at nucleotide 1905, resulting in a predicted
protein sequence change of alanine to proline (A636P),
was identified in both subjects showing the mobility shifts.
Three unaffected sibs of the affected son (III.1, III.3, and
III.4; fig 1) do not carry this mutation. We sequenced all 16
hMSH2 and 19 hMLH1 exons in the two affected subjects
and did not find another mutation elsewhere in either
hMSH2 or hMLH1 that might otherwise account for the
MSI observed.

The A636P mutation appears to be associated with
MSI’. To exclude the possibility that it represents a rare
polymorphism over-represented in the Ashkenazi, but
not associated with HNPCC, we therefore screened 100
Ashkenazi Jews who donated blood anonymously for DNA
studies but were not known to have CRC. No carriers of
A636P were found by ASOH analysis. Another important
question is whether this is a common mutation in
Ashkenazi Jewish CRC patients. In total, DNA samples
from 196 unselected Jewish CRC patients were success-
fully amplified by PCR and tested for the presence of the
A636P allele. BAT26 MSI was present in the tumour
DNA extracted from the neoplasms of 15 (7.6%) of these
patients. No carriers of A636P hMSH2 were identified;
these findings further indicate that A636P is not a common
sequence variant in this population.

Following the report1 that I1307K APC is common in
Ashkenazi Jewish CRC families, we investigated whether
this mutation was present in the MON702 family. CRCs
from subjects carrying this variant are usually MSI
negative.11 21 It was, therefore, not surprising that I1307
APC was not present in the affected subjects in MON702,
whose CRCs were MSI’. However, unaffected subjects
III.3 and III.4 were found to carry I1307K APC; these
positive ASOH results were confirmed by sequencing. We
also observed I1307K APC in eight out of 153 samples
from Ashkenazi Jewish controls (5.2%), a similar figure
to those reported previously.11 21

Most of the hMSH2 mutations described so far in
HNPCC result in a truncated protein and allow an imme-
diate inference of pathogenicity. In the absence of large
kindreds with numerous affected subjects, it is difficult to
evaluate the pathogenicity of non-truncating mutations.
Ideally, previously conducted functional studies can shed
light on the aetiological significance of missense mutations
in small kindreds such as MON702; inactivating missense
mutations at the ATP binding site of hMSH2 have been
described.22 On the other hand, six missense mutations
found in HNPCC patients were found not to affect protein-protein interactions of hMSH2 and hMSH6 or
hMSH3.23 Unfortunately, however, amino acid 636 of the
hMSH2 protein has not been directly examined in any of
the published studies on the function of hMSH2.24 25 The
APC gene has been examined in E coli using a colorimetric
assay based on an in frame fusion with the β-galactosidase
gene.26 Andreuetti-Zaugg et al27 designed a fusion protein
assay in S cerevisiae in which hMSH2 is inserted upstream
of the ADE2 gene, in the same reading frame. When this
plasmid is expressed in S cerevisiae, high levels of active
Adc2 protein are formed, resulting in white colonies in a
colorimetric assay. Truncating mutations in the hMSH2
gene lead to truncated fusion protein, hence red colonies,
reflecting lack of Adc2 activity. Surprisingly, some missense
changes, including the HNPCC mutation G674D at the
ATP binding site, resulted in pink colonies, reflecting par-
tial activity of the ADE2 reporter gene. Since protein
expression was similar, the reduced enzymatic activity of
the fusion protein was inferred to be the result of incorrect
protein folding, leading to a denatured protein.26 We intro-
duced A636P hMSH2 into plasmid pCA37 by site directed
mutagenesis (QuickChange kit, Stratagene), creating an
A636P hMSH2:ADE2 fusion protein. A mutant protein of
the correct relative molecular mass was observed to be
expressed at comparable levels to its wild type counterpart
by immunoblotting analysis of cellular extracts. Next, the
phenotype of the A636P fusion protein was determined in
the colorimetric in vitro assay.27 Colonies from cells
containing the pCA37-hMSH2 A636P mutant plasmid
were pink. This indicated a partial loss of function of the
fusion protein, and suggested that the mutation does affect hMSH2 protein folding in *S. cerevisiae* and by implication may affect structure and function in human cells. This finding further validates the hMSH2::ADE2 assay as capable of detecting certain non-truncating mutations in hMSH2.

In MON702, an Amsterdam criteria positive HNPCC kindred, we found that the CRCs from two affected subjects (II.3 and III.2) showed MSH1. A missense G to C (nucleotide 1905) transversion mutation in hMSH2 was identified at codon 636 in both these subjects, leading to a predicted protein change of alanine to proline in the hMSH2 protein. This mutation has not been previously published, but was recently posted on the HNPCC ICG database (http://www.nfhd.hl.nh, Bresac-de Paillerets, unpublished data). However, these investigators were uncertain about the pathogenicity of the A636P mutation. We consider the A636P missense mutation to be pathogenic for the following reasons: (1) the mutation segregates with the disease, and three colonoscopy negative relatives do not carry the mutation; (2) the mutation was not found in 100 Ashkenazi Jewish controls, who were not known to have CRC; (3) no other truncating or missense mutation was identified on complete screening of hMLH1 or hMSH2 by SSCA and direct sequencing in affected subjects; (4) the mutation substitutes an amino acid belonging to a different polarity group and can be inferred to affect protein folding as shown in the hMSH2::ADE2 fusion assay.

The I1307K missense mutation in *APC* has been reported to predispose to CRC. Virtually restricted to the Ashkenazim, it is not associated with classical FAP. We wished to study MON702 for this mutation, because it has been suggested that I1307K *APC* may be more frequent in CRC kindreds carrying MMR gene mutations. 19 On testing the living members of the kindred for this mutation, we found that I1307K *APC* was indeed present in the family, but was carried by those who have neither CRC nor polyposis. The proband and her affected son do not carry the mutation. As well, analysis of the sole available archival pathology specimen from the father (fig 1, II.10) suggested that the mutation is coming from his side of the family.

There are no confirmed cases of CRC in his 10 sibs. In the MON702 HNPPC kindred, affected A636P hMSH2 carriers do not carry the I1307K *APC* variant; therefore, our present study does not suggest a biological relationship between mutations in MMR genes and I1307K *APC*. Previously, we reported19 a French Canadian kindred (MON1061) in which I1307K *APC* was segregating with a novel truncating mutation in hMLH1 (1784delT). There was no consistent relationship of the presence or absence of I1307K *APC* with CRC, but all tested subjects with early onset CRC were heterozygous for the hMLH1 mutation.

Clearly, further work is required to resolve this issue, including follow up of these families and ascertaining of subjects carrying mutations in the germline hMSH2 gene and I1307K *APC*. Until that time caution should be exercised in deciding to discontinue cancer surveillance of a person in an Ashkenazi Jewish CRC family when MMR gene mutation analysis is negative, even in a family where a germline MMR mutation has been identified, unless status at *APC* codon 1307 has been determined. Recent studies of Ashkenazi Jewish populations have resulted in odds ratios of under 2 for the risk of CRC associated with the I1307K allele of *APC*.4-13 Ashkenazi Jews carrying the I1307K allele but who have no family history of CRC have a risk of colon cancer that is only marginally increased, and more evidence that knowledge of I1307K status can prevent CRC is required to support general screening efforts. However, in an Ashkenazi Jewish family with mul-
tiple cases of CRC, *APC* I1307K determination of all subjects who request mutation analysis may be justified.

We thank Dr Steven Narod and Dr Gordon Glendin for their help with the initial investigation of MON702 and at other stages of this work. Financial support was provided in part by a Chercheurs-Citoyens Award and a Family Cancer Network Grant from the Fonds de la Recherche en Sante du Quebec (WDP), the Judy Steinberg Research Fund (PJM), and an operating grant from the Medical Research Council of Canada (DL).

Correspondence to: Dr Fu et. MDW@musica.mcgill.ca

Xuan ZQ, Kasprzak LR, Gordon PH, Finkley L, Foulkes WD. I1307K *APC* and hMLH1 mutations in a non-Jewish family with hereditary nonpolyposis colorectal cancer. *Gastroenterology* 1998;114:368-70.

A PCR test for the detection of hypermethylated alleles at the retinoblastoma locus

Editor—The development of retinoblastoma, a childhood malignancy of the eye, is initiated by mutations in both alleles of the retinoblastoma gene (RB1). Mutations changing the nucleotide sequence at this locus and chromosomal mechanisms resulting in loss of heterozygosity (LOH) are the most common events responsible for gene inactivation.1 However, in the RB1 gene, as well as in other tumour suppressor genes including BRCAl, p15, and p16, hypermethylation of 5′ regulatory regions may also cause gene inactivation and, consequently, tumour development.2 4 Methylation of the CpG rich island at the 5′ end of the RB1 gene is observed in some 10% of unilateral sporadic retinoblastomas.4 5 Recently, the methylation pattern of tumours with hypermethylated RB1 alleles was analysed in detail by the bisulphite genomic sequencing technique.5 In most of these tumours, most CpG sites were methylated (75-100%). In one of seven tumours only, the density of methylated CpG sites was more variable, ranging from 25% to 62.5%.

Methylation analysis in tumours from patients with specific unilateral retinoblastoma is required for accurate risk prediction in relatives.4 Consequently, we have devised a methylation specific PCR assay (MSP)8 for rapid and reliable detection of methylation at the RB1 promoter. Bisulphite treatment of denatured DNA converts all unmethylated cytosines to uracil leaving methylated cytosines in CpG dinucleotides unaltered. After bisulphite treatment, a methylated allele differs from the unmethylated allele in nucleotide sequence at all CpG positions. The downstream PCR primer (RBcom) was designed to bind to the bisulphite treated sense strand irrespective of the methylation status (Fig 1). Binding of RBcom to a methylated or unmethylated allele results in different complementary strands in the first round of the PCR. Upstream primers are designed to bind to the DNA strand synthesised in the first round of PCR. Primer RBNet binds to the strand derived from the methylated allele, whereas primer RBunet will only bind to the DNA strand generated from the unmethylated RB1 allele. The methylated allele results in a 201 bp PCR product, whereas the unmethylated allele results in a 154 bp PCR product. As unmodified genomic DNA is not amplified, incomplete modification of genomic DNA in the bisulphite reaction will not yield specific PCR products (not shown). However, mutations affecting the primer binding sites might result in diminished or absent amplification of the corresponding PCR product and thus false negative results.

To establish the MSP at the RB1 promoter, 20 tumour DNA samples, which had previously been characterised in detail,1 were used. Characterisation included genotyping with intragenic markers, DNA sequencing, and analysis of the methylation status by Southern blot hybridisation of genomic DNA digested with methylation sensitive restriction enzyme BsaHI. All tumours showed loss of heterozygosity (LOH) at the intragenic polymorphic loci RB1 and RB1.20, and an inactivating mutation was identified in the remaining allele. In eight tumours a methylated allele was identified by Southern blot hybridisation. In each of these samples, a 201 bp PCR product was clearly visible when tested in the MSP assay (fig 2, lanes 2, 4, 7, 11, and 12). As expected, DNA from tumour and blood cells not containing a methylated RB1 allele produced a 154 bp PCR product only (fig 2, lanes 1, 3, 5, 8, 9, and 10). No PCR product was obtained from unmodified genomic DNA under the conditions used here (data not shown). Trace amounts of the 154 bp PCR product were also detectable in tumours with LOH at intragenic loci. This finding might be the result of an unhomogeneous cell population consisting of cells with varying degrees of hypermethylation and non-tumour cells. Therefore, the presence of a 154 bp PCR product in the RB1-MSP assay does not necessarily indicate the presence of an unmethylated RB1 allele in the tumour. A 201 bp PCR product specific for the