Molecular Medicine
Unit, St James's
University Hospital,
Leeds LS5 7TF, UK
N J Lench
A F Markham

Yorkshire Regional
Genetics Service, St
James's University
Hospital, Leeds LS5
7TF, UK
R F Mueller

SmithKline Beecham,
New Frontiers Science
Park, Harlow, Essex
CM19 5AW, UK
D F Kelsell

Department of
Otolaryngology,
University of Iowa,
Iowa, IA 52242, USA
R J H Smith

Department of
Medical Genetics,
University of Antwerp,
Antwerp B2610,
Belgium
P J Willems
I Schatteman
H Capon
P J Van De Heyning
G Van Camp

Correspondence to:
Dr Lench.

Received 30 May 1997
Revised version accepted for
publication 4 August 1997

Short reports

A Moroccan family with autosomal recessive
sensorineural hearing loss caused by a mutation in
the gap junction protein gene connexin 26 (GJB2)

Nicholas J Lench, Alexander F Markham, Robert F Mueller, David P Kelsell,
Richard J H Smith, Patrick J Willems, Isabelle Schatteman, Hilde Capon,
Paul J Van De Heyning, Guy Van Camp

Abstract
We report a mutation in the connexin 26
gene (Cx26) in a consanguineous Moroc-
can family linked to the DFNA3/DFNB1
locus on human chromosome 13q11-q12.
Affected subjects display congenital, bilat-
eral, sensorineural hearing loss. We have
previously identified Cx26 mutations in
consanguineous Pakistani families. This
current finding indicates that Cx26 mutations
are not restricted to ethnically and
geo graphically distinct populations. This
is an important observation since it will
help to determine the overall contribu-
tion of connexin 26 mutations to autoso-
mal deafness in different populations.
(J Med Genet 1998;35:151–152)

Keywords: DFNB1/DFN3; connexin 26 (GJB2); sen-
sorineural hearing loss

We have reported recently that both autosomal
dominant (DFN3) and autosomal recessive
(DFNB1) forms of non-syndromal, sen-
sorineural deafness are caused by mutations in
the connexin 26 gene (Cx26).1 Immunohisto-
chemical analysis of human connexin 26
expression in the stria vascularis, basement
membrane, limbus, and the spiral prominence
of the cochlea is consistent with the hypothesis
that Cx26 mutations can be involved in the
molecular pathology of these forms of heredi-
tary deafness. The connexins are a family of
intercellular gap junction proteins sharing
similar topology and with a high degree of con-
servation that facilitate the diffusion of small
molecules between adjacent cells.2 Connexins
oligomerise within the plasma membrane of
one cell to form “hemi-channels” or “connex-
on-ns”; extracellular connexon domains from
adjacent cells interact to complete intercellu-
lar junctions.

We identified a North African family
originating from Morocco with two children of
a first cousin marriage presenting with cogen-
ital, symmetrical, bilateral, sensorineural
hearing loss and a third newborn child of
undetermined diagnosis. Clinical and ophthal-
moregional examinations were normal, exclud-
ing syndromal deafness, as were routine tests
for acquired hearing loss caused by infection
or ototoxic drugs. Subject II.1 is an 8 year old
girl with congenital, symmetrical, bilateral,
perceptive hearing loss (Fletcher index 115
dB). II.2 is a 5 year old boy with congenital,
symmetrical, bilateral, perceptive hearing loss.
At low frequencies there is a threshold of 95
dB. At or above 1000 Hz (left ear) and 2000
Hz (right ear) no threshold could be deter-
mined. II.3 is a 1 year old boy who at the time
of BERA examination (~2 months old)
showed normal curves for the left ear and
pathological curves for the right ear.

Genetic linkage analysis was performed on
this family using microsatellite markers for
known dominant (DFNA1-11) and recessive
(DFNB1-8) non-syndromal deafness loci.3
Only the markers D13S175 and D13S292, for

![Figure 1 Genotyping for family linked to DFNA3/DFNB1 locus. Parental chromosomes carrying the high risk haplotype are shaded black.](http://jmg.bmj.com/)

http://jmg.bmj.com/first published as 10.1136/jmg.35.2.151 on 1 February 1998. Downloaded from http://jmg.bmj.com/ on June 8, 2022 by guest. Protected by copyright.
Figure 2 Representative ABI 377 Genescanner electropherograms showing deletion of single guanosine residue in: (A) affected subject v (B) normal unaffected subject.

locus DFNB1/DFNA3 at chromosome 13q11-q12, were homozygous in the affected subjects. The family was genotyped for a further five markers from the locus to determine whether or not this was a region of autogyosity or chance homozygosity (fig 1). Haplotype analysis was concordant with linkage to DFNA3/DFNB1 even though a statistically significant lod score could not be generated with this family. Therefore, affected subjects were screened for mutations in Cx26. The entire Cx26 coding sequence was amplified as a single 790 bp fragment and sequenced using internal primers with an automated ABI 377 DNA sequencer. Direct DNA sequencing showed a single guanosine deletion that was homozygous in affected subjects II.1 and II.2, and heterozygous in subjects I.1, I.2, and II.3 (fig 2). This deletion occurs in a stretch of six guanosine residues at positions 30-35nt in the Cx26 coding sequence. It is not possible to identify at which of these positions the residue is deleted; however, in all cases the deletion results in premature truncation of the Cx26 protein by introducing a stop codon at amino acid 13.

We have previously identified two homozygous Cx26 mutations in three consanguineous families from the Mirpur region of Pakistan. In these pedigrees, premature termination codons were found at amino acids 24 and 77. The identification of a novel mutation in this Moroccan family indicates that Cx26 mutations causing non-syndromal, sensorineural deafness have arisen independently in geographically and ethnically distinct populations. Therefore, it is probable that Cx26 mutations will contribute to autosomal recessive, non-syndromal, sensorineural hearing loss in other populations. A study of markers linked to DFNA3/DFNB1 in 19 consanguineous New Zealand families of western European origin has shown cosegregation of the same alleles in affected subjects consistent with approximately 50% of the families segregating DFNA3/DFNB1. Consequently, more extensive Cx26 mutation analysis is required in families displaying autosomal recessive, non-syndromal, sensorineural deafness to establish the overall contribution of the DFNA3/DFNB1 locus to inherited hearing loss. Given the functional and structural similarities of the connexin proteins, any human connexin genes mapping to regions of the genome containing known deafness loci will merit further investigation as candidate genes for non-syndromal, sensorineural hearing loss.

We thank Dr P Van de Sande and Dr D Keusters for their help in this study. The study was funded in part by the Wellcome Trust, Medical Research Council, The Hearing Research Trust, Northern and Yorkshire Regional Health Authority, West Riding Medical Research Trust, National Institute on Deafness and Other Communication Disorders (Grant No 1R01DC02842-01), the University of Antwerp, Fonds voor Wetenschappelijk Onderzoek, and Else Kroner-Fresenius-Stiftung.