The mitochondrial A3243G mutation presenting as severe cardiomyopathy

Laura Vilarinho, Filippo M Santorelli, Maria J Rosas, Cláudia Tavares, Manuel Melo-Pires, Salvatore DiMauro

Abstract
A 6 year old Portuguese boy with dilated cardiomyopathy had abundant ragged red fibres in muscle (20% of total) and severe lactic acidosis. Molecular genetic analysis showed the A to G transition in the mitochondrial transfer RNA (A3243G) gene at nt 3243 ("MELAS mutation"), which accounted for 88% and 68% of the total mtDNA in his muscle and blood, respectively. Molecular studies in blood from 16 maternal relatives identified lower percentages of the mutation only in the oligosymptomatic mother and brother. This case reinforces the notion that cardiomyopathy can be the presenting and predominant clinical expression of the A3243G mutation.

Keywords: mitochondrial DNA; A3243G; cardiomyopathy

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a maternally inherited disorder first described by Shapiro et al. in two sibs with normal development who presented between the ages of 3 and 4 years with growth retardation, hirsutism, and episodes of muscular weakness, anorexia, headache, and vomiting induced by exercise or intercurrent illnesses. MELAS was later recognised by Pavlakis et al. as an independent clinical syndrome. Clinical criteria for diagnosis have recently been revised by Hirano and Pavlakis and include lactic acidosis, episodic vomiting, seizures, migraine-like headaches, short stature, and recurrent cerebral insults resembling strokes and causing hemiparesis, hemianopia, or cortical blindness. A point mutation in the tRNA (Leu(UUR)) gene of the human mitochondrial genome (A3243G) has been described and has been found in the majority of patients with the clinical features of MELAS. However, both clinical and genetic heterogeneity are well documented.

We report the first Portuguese family harbouring the A3243G mutation, where the molecular defect was detected in a child with a severe dilated cardiomyopathy as the sole clinical manifestation. The present observation confirms the notion that mitochondrial DNA (mtDNA) mutations have variable clinical presentations and calls attention to the A3243G mutation as a cause of cardiomyopathy.

Case report
A 6 year old boy, born after an uneventful pregnancy to non-consanguineous parents, was admitted to hospital because of vomiting, general physical exhaustion, and unspecified muscle pain. He had developed normally until 3 years of age, when asthenia, anorexia, and poor physical growth were first noted. Episodes of postprandial vomiting without any other symptoms had occurred on several occasions and worsened over the next two years.

On admission, he was in physical distress but alert, and complained of generalised fatigue. Physical examination showed short stature; height was 110 cm and weight 20 kg, which were both below the 5th centile for age and sex. General examination showed a cardiac systolic bruit and echocardiography showed a dilated left ventricle. Long term electrocardiogram showed some episodes of sinus arrhythmia at night.

Neurological examination, brain CT scan, and electromyography were normal. In particular, there was no evidence of abnormal muscle tone, pyramidal tract signs, abnormal ocular muscle movements, or pigmentary retinopathy.

Metabolic investigation showed high levels of lactic acid (6.2 mmol/l when fasted, 4.8 mmol/l when fed, normal <2.5 mmol/l) with an increased lactate/pyruvate ratio, low total carnitine levels (27 µmol/l, normal range: 35-70), and high creatine kinase (three times normal) and lactic dehydrogenase (five times normal).

Morphological studies of a skeletal muscle biopsy showed minimal atrophy and evidence of abnormal mitochondrial proliferation (ragged red fibres, RRF) with the modified Gomori trichrome stain. RRF accounted for more than 20% of the total fibres examined; most RRF showed strong oxidative activity with the histochemical stain for cytochrome-c oxidase (COX), but the same rare fibres were COX negative.

The family pedigree is shown in fig 1. The family history was significant for the 36 year old mother, who suffered from an affective disorder and had attempted suicide in the past. The proband’s 10 year old brother was asymptomatic but mild hyperlactacidaemia was found in both the mother and brother (2.8 mmol/l and 2.7 mmol/l, respectively).

Methods
Spectrophotometric measurement of respiratory chain enzymes and citrate synthase were carried out in skeletal muscle homogenates as
A3243G previously reported.1 High molecular weight DNA was extracted according to standard methods. Using oligonucleotide primers (5'-3') nt 3116-3134 and 3353-3333 (positions according to the published Cambridge sequence), we PCR amplified a 269 base pairs fragment encompassing the 16S rRNA, trNA[Leu(UUR)] and ND1 genes. PCR conditions were 94°C for one minute, 55°C for one minute, and 72°C for 45 seconds. A last "hot PCR cycle" was performed to avoid formation of heteroduplex molecules. Ten percent of PCR products were digested with the endonuclease HaeIII because the G at nt 3243 creates an additional site of cleavage in the mutated molecules. Fragments were separated through a 12% non-denaturing polyacrylamide gel and exposed to XAR-Kodak film at room temperature. To assess the abundance of the mutation, gels were scanned on a Phosphor-Imager (Bio-rad, Hercules, CA), and the results analysed by Image-Quant software (Molecular Dynamics, Sunnyvale, CA).

Results and discussion

Biochemical studies in our patient's muscle biopsy showed severe combined defects of the activities of complex I (20% normal), complex II (22%), and complex IV (12%), while citrate synthase was twice the value of normal controls. Southern blot analysis ruled out large scale mtDNA rearrangements.

MtDNA analysis showed the A3243G mutation (MELAS mutation) in 88% of the proband's total muscle mtDNA and in 68% of his blood mitochondrial genome. Lower percentages were detected in blood from the mother (43%) and the older brother (49%) while none of the other 14 maternal relatives tested positive in blood, the only tissue available for our investigation.

Although mitochondrial disorders associated with mtDNA defects are usually characterised by encephalomyopathy, these syndromes are multisystemic and virtually every organ system can be involved.1 Endocrinopathies such as diabetes mellitus, hypoparathyroidism, and growth hormone deficiencies are common.3,4 Renal tubular acidosis (de Toni-Fanconi Debré syndrome) is frequently associated with mitochondrial myopathies. Exocrine pancreatic dysfunction and sideroblastic anaemia are defining features of Pearson syndrome, which results from large scale mtDNA rearrangements.5 Mitochondrial patients have also presented with cardiomyopathy where cardiac dysfunction has three major manifesta-

tions: cardiomyopathy (hypertrophic more often than dilated), cardiac conduction block, and pre-excitation syndrome.3,4 However, disorders dominated by heart disease are relatively rare and often present early in life as fatal infantile cardiomyopathies.3,4

Our proband presented with a dilated cardiomyopathy as the predominant, if not the sole, clinical evidence of the A3243G mutation. The proportion of mutated genes was higher in muscle than in blood, it was less abundant in blood from the oligosymptomatic mother and brother, and it was not detected in blood of additional, healthy maternal relatives. Although the MELAS syndrome is usually characterised by CNS involvement and stroke-like episodes before the age of 40, there is considerable evidence of clinical heterogeneity, including familial progressive external ophthalmoplegia and maternally inherited diabetes mellitus and deafness.6,7 In this regard, our recent experience with more than 75 patients harbouring the A3243G mutation has shown that involvement of tissues other than the CNS is quite common (S Shanske, F M Santorelli, unpublished data). We also note that 20% of reported MELAS patients have had cardiomyopathy, which was hypertrophic in most cases, although cardiac symptoms were usually overshadowed by neurological manifestations. Our patient, therefore, illustrated yet another atypical presentation of the A3243G mutation. It would not be surprising if additional phenotypes, including familial cardiomyopathies, were associated with this mutation. The affective disorder of the mother may also represent an atypical presentation of the A3243G mutation, as previously reported.16,18

Although we did not detect significant levels of the A3243G mutation in blood from 14 additional maternal relatives, absence in blood does not preclude the possibility that postmitotic tissues, such as muscle and brain, may harbour detectable levels of mutated genes. However, these subjects' neurological and cardiological evaluations were normal. With the lack of efficient therapy, continuing monitoring of at risk subjects and genetic counselling are the only tools that we can now offer to this family.

We propose that mtDNA analysis should be included in the diagnostic approach to idiopathic dilated cardiomyopathies.


The mitochondrial A3243G mutation presenting as severe cardiomyopathy