Germline and somatic mosaicism in a female carrier of Hunter disease

Roseline Roissart, Irène Maire, Véronique Bonnet, Thierry Levade, Dominique Bozon

Abstract
Carrier detection in a mucopolysaccharidosis type II family (Hunter disease) allowed the identification of germline and somatic mosaicism in the patient's mother: the R443X mutation was found in a varying proportion in tested tissue (7% in leucocytes, lymphocytes, and lymphoblastoid cells, and 22% in fibroblasts). The proband's sister carries the at risk allele (determined by haplotype analysis), but not the mutation. In sporadic cases of X linked diseases, germline mosaicism of the proband's mother is difficult to exclude and should be considered in genetic counselling.

(J Med Genet 1997;34:137-140)

Keywords: mucopolysaccharidosis type II; mosaicism; mutation.

Hunter disease or mucopolysaccharidosis type II (MPS II) is an X linked lysosomal storage disease resulting from the deficiency of iduronate-2-sulphatase (IDS, EC 3.1.6.13). The IDS gene has been mapped to Xq28. A full length cDNA clone containing an open reading frame of 1650 bp has been isolated and sequenced. The IDS gene spans 24 kb and contains nine exons and has been completely sequenced (GenBank accession number L43581). A pseudogene located 20 kb distal to the active gene has been characterised and is involved in recombinations with the IDS gene. Various IDS locus alterations have been described, such as large deletions and rearrangements, but about 80% of the mutations are point mutations, minor deletions, or insertions. Most of them are private except for some that more frequently occur on CpG dinucleotides.

Female carriers of MPS II are asymptomatic though they often show decreased levels of IDS activity in serum or leucocytes or both. Cloned fibroblasts or hair roots have also been studied for carrier detection. However, attempts to identify carriers by enzyme assays have often led to ambiguous results because of non-random X inactivation. Indirect genotype analysis using intragenic and closely linked flanking polymorphisms, combined with enzymatic and pedigree analyses, allows carrier detection in some but not all families. Identification of the mutation in a patient with MPS II allows fast and reliable carrier detection in related at risk females.

The carrier status of females in a family with an isolated case of Hunter disease was studied by haplotype, enzyme analysis, and mutation identification. This study led to the identification of germline and somatic mosaicism in the proband's mother.

Material and methods
CASE REPORT
The patient was the first child of healthy parents. The diagnosis was suspected at 3 years but was assessed at 6 years; increased excretion of glycosaminoglycans (heparan sulphate and dermatan sulphate) in urine was found as well as IDS deficiency in serum. He is now 17 years old and presents with coarse facial features, enlarged tongue, kyphosis, joint stiffness that has required surgery, short stature, hepatosplenomegaly, cardiopathy (mitral and aortic insufficiency, mitral stenosis), deafness, and mental retardation. The pedigree of the family is shown in fig 1.

IDS ACTIVITY
IDS activity was determined using the reagent kit provided by The Hospital for Sick Children, Toronto, Canada as previously described. Genomic DNA from leucocytes was digested by StuI, TaqI, and BanI. Southern blotting was carried out using standard procedures. DNA probes, radio-labelled with α32P-dCTP by random priming, included: IDS cDNA (1.7 kb NotIXhol fragment from the cDNA clone pB2Sc17 containing the complete coding region of IDS), probe II-10 at locus DXS466, probe U6.2-20E at locus DXS304 and probe VK21A at locus DXS296. Haplotypes were determined with the StuI intragenic polymorphism (in intron 8) and three extragenic polymorphisms, BanI (U6.2-20E) and TaqI (II-10 and VK21A). A microsatellite at locus DXS1113, located 10 kb distal to the IDS gene, was analysed as described by Weber et al.

AMPLIFICATION OF GENOMIC DNA
Exon 9 was amplified as a 580 bp fragment with oligonucleotides 5'-CCATTCTGCTTGTGCTTTTCA-3' (nt 54371-54352 in intron 8) and 5'-CAAAACGACCCAGCTCTAACTC-3' (nt 53792-53812 in exon 9). PCR conditions were: 94°C for 30 seconds, 61°C for 30 seconds, and 72°C for 45 seconds, for 30 cycles.
Amplification of genomic DNA from hair roots was performed as follows: each hair root was rinsed in distilled water and in 100% ethanol, then heated to 94°C for 30 minutes in PCR buffer. Amplification was performed with two sets of primers: 5'I/V6 and microsatellite DXS1113 primers for 30 seconds at 94°C, 45 seconds at 60°C, and one minute at 72°C, for 30 cycles.

EXON 9 SEQUENCING
After amplification, PCR products were purified on a 5% acrylamide gel and directly sequenced with the Thermosequenase cycle sequencing kit (Amersham) using γ32P-ATP.

R443X MUTATION ANALYSIS
Allele specific oligonucleotide (ASO) hybridisation
The PCR products were analysed by ASO hybridisation. ASO used for the detection of the normal and mutant R443X sequences were 5'-AGCATTTTGGATTCCG-3' and 5'-AGCATTTTGGATTCCG-3' respectively. Washing conditions were 5 × SSC at 37°C for 2 × 10 minutes, and 2 × SSC at 42°C for 3 × 15 minutes.

TaqI digestion
The R443X mutation abolishes a TaqI site. After digestion of the PCR products, the mutation is detected by the presence of an abnormal 580 bp band instead of the normal 410 and 170 bp bands.

Quantitative PCR
To assess the relative proportion of mutant (R443X) and normal DNA, exon 9 was amplified as described previously for 29 cycles, and 1 μCi of α32P-dCTP was added before the last cycle. Radiolabelled PCR products were digested by TaqI and separated on an 8% acrylamide non-denaturing gel. The gel was dried and autoradiographed. Radioactivity of each band was quantified by scanning the film. Then the bands were cut from the dried gel and radioactivity content estimated by scintillation counting.

Table 1 IDS activity in various samples of the patient and his family

<table>
<thead>
<tr>
<th></th>
<th>Serum (pmol.h⁻¹.mg⁻¹)</th>
<th>Leucocytes (pmol.h⁻¹.mg⁻¹)</th>
<th>Lymphoblastoid cells (pmol.h⁻¹.mg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Mother</td>
<td>1355</td>
<td>77</td>
<td>44</td>
</tr>
<tr>
<td>Sister</td>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>Grandmother</td>
<td>1785</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1301</td>
<td>118</td>
<td>44</td>
</tr>
<tr>
<td>Normal</td>
<td>1185-1900</td>
<td>75-158</td>
<td>20-65</td>
</tr>
<tr>
<td>range</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Germline and somatic mosaicism in a female carrier of Hunter disease

![Diagram](image)

Figure 2 Detection of the R443X mutation by allele specific oligonucleotide hybridisation. After amplification of exon 9 as a 580 bp fragment, the R443X mutation was tested for after hybridisation with the normal and the mutant probe. Mother’s hair roots (A1 to C11). Patient’s fibroblasts (D1). Mother’s leucocytes (D2), lymphocytes (D3), lymphoblastoid cells (D4), fibroblasts (D5). Grandmother’s leucocytes (D6), fibroblasts (D7). Sister’s lymphoblastoid cells (D8), fibroblasts (D9). Control leucocytes (D10).

![Graph](image)

Figure 3 Quantitative PCR. Exon 9 was radiolabelled during the PCR and digested with TaqI. In normal DNA, the 580 bp fragment is cut into 410 and 170 bp fragments. The R443X mutation abolishes a TaqI site and is detected by the presence of a 580 bp fragment. The relative proportion of mutants and normal DNA was quantified by autoradiography and scintillation counting. Patient’s fibroblasts (lane 1), mother’s leucocytes (lane 2), mother’s lymphocytes (lane 3), mother’s lymphoblastoid cells (lane 4), mother’s fibroblasts (lane 5), heterozygote’s leucocytes (lane 6), control leucocytes (lane 7). DNA fragment sizes are given in base pairs.

proportion of the abnormal 580 bp band was about 7% in leucocytes, lymphocytes, and lymphoblastoid cells, and 22% in fibroblasts.

Discussion

Carrier detection in this family was first performed by measurement of IDS activity and haplotype analysis: the results of IDS activity were inconclusive for the mother, and the carrier status of the patient’s sister could not be determined.

The R443X mutation was later identified in the patient. This mutation, which occurs on a CpG dinucleotide, introduces a stop codon at position 443 and creates a truncated, non-functional protein. This mutation has been described in several patients of different ethnic origin. Haplotype and mutation analysis showed that the mother carries a mutant or wild type sequence on the same chromosome. The low proportion of mutant chromosomes varied from tissue to tissue but remained lower than in a normal carrier (the highest proportion was observed in fibroblasts). These results suggest somatic mosaicism in the mother. Her daughter, who inherited the at risk haplotype, does not carry the R443X mutation and could be excluded as a carrier. Therefore, our findings strongly support the existence of both germline and somatic mosaicism in the mother.

Somatic mosaicism can be easily detected when the proportion of mutant cells is very different from 50%. However, the finding of a classical heterozygote status in leucocytes does not rule out mosaicism and, in some instances, both haplotype and sequence analysis have been necessary to recognise mosaicism.

To date, no case of somatic and germline mosaicism in Hunter disease has been reported. In a previous report, Ben Simon-Schiff et al. suggested the presence of germline mosaicism in an obligate carrier, based on discordance of normal IDS activity in serum and random X inactivation, but no clear evidence of germline mosaicism was obtained.

Several mechanisms have been proposed for the occurrence of somatic and germline mosaicism. The most likely explanation for the existence of two populations of cells in the mother is that the mutation occurred as a result of a mitotic error at an early embryonic stage; the postzygotic mitotic mutation must have occurred early enough to be transmitted to her germline cells, most probably before differentiation of the three major germ layers (endoderm, mesoderm, ectoderm), and therefore after the first cell division and before the late blastocyst stage of development. Alternatively, an uncorrected half chromatid mutation in one of the parental gametes could have established mosaicism after the first mitotic division after conception. As a third possibility, the mother could be a chimera consisting of two fertilised eggs, one carrying the mutation; in this case, the grandmother could also be a carrier. In our study, the grandmother was not a carrier as she does not carry the at risk allele.

In the proband’s mother, germline mosaicism, either isolated or as part of somatic mosaicism, has been documented in a growing number of X linked disorders and germline mosaicism cannot be excluded in the non-carrier mothers of sporadic cases. Therefore, the risk for mosaicism in families with isolated cases might be higher than previously reported. Bakker et al. estimated that the incidence of gonadal mosaicism could be as high as 14% for the at risk haplotype in new cases of DMD. Forty three families with a sporadic case of Hunter disease were studied in our laboratory. In four cases the proband’s mother was not found to be a carrier of the mutation and germline mosaicism could not be excluded. Prenatal diagnosis should consequently be offered to every mother of a sporadic case.
We thank Drs J J Hopwood, J L Mandel, T J M Hulsebos, and G R Sutherland for providing probes pHS3Cl7, U2.2-20E, II-10, and VK11A respectively, and Drs F Prieur and G Bourouillau for karyotype analysis. This work was supported by "Viancre les Maladies Lysosomales" (VML) and "Programme Hospitalier de Recherche Clinique" (PHRC).