46,XX, inv(6)(p21.1p23) in a pedigree with hereditary haemochromatosis

Charles P Venditti, Nicole K Seese, Glenn S Gerhard, Amy E Ten Elshof, Karen A Chorney, Philip N Mowrey, Paul G Lacey, Joan H M Knoll, Michael J Chorney

Abstract

Hereditary haemochromatosis (HFE) is a recessive genetic disease of iron overload which has been shown by linkage analysis to reside on the short arm of chromosome 6, close to the major histocompatibility complex (MHC). Positional cloning of the putative HFE locus has been hampered, in part, by the lack of a structural alteration on 6p. In this report, we describe a pedigree with HFE which carries a balanced paracentric inversion of chromosome 6, inv(6)(p21.1p23), a rarely reported chromosomal rearrangement in this region. We have determined the inheritance of the chromosome harbouring the inversion, which segregates as an HFE chromosome. Because the HFE locus has been mapped distal to the HLA-F class I locus at 6p21.3, the breakpoints associated with this chromosomal rearrangement may provide a significant genomic landmark for positional cloning of the HFE gene.

Keywords: hereditary haemochromatosis; human chromosome 6 inversion; major histocompatibility complex.

Idiopathic or hereditary haemochromatosis (HFE) (Mckusick No 235200) is an autosomal recessive disease of progressive iron accumulation which can result in cirrhosis, carbohydrate intolerance, cutaneous hyperpigmentation, cardiomyopathy, arthritis, and hypogonadotropic hypogonadism. In certain white populations the carrier frequency may approximate 5%. Because the expression of the HFE defect is partially dependent on dietary factors and gender, the definitive diagnosis of HFE can be clinically challenging in predisposed people. The identification of the mutation(s) causing HFE may allow for the assignment of more certain clinical diagnoses.

The genetic defect in HFE has been linked to the human leucocyte antigen A locus (HLA-A), which resides at the telomeric end of the major histocompatibility complex (MHC) class I region. The precise location of the HFE gene is not known at present, but has been the subject of several recent genetic mapping experiments. The results of a series of linkage and linkage disequilibrium studies indicate that the HFE gene is associated with polymorphisms defined by the microsatellite D6S105, but, based on defined recombinants, may reside anywhere between the HLA-F gene and the telomeric microsatellite D6S299, which is approximately 4 cM from the HLA-A locus. Our own data, based on the study of an American patient collection, support the localisation of the HFE locus between markers D6S464 and D6S1558, but most likely close to D6S1260; this is in general agreement with data obtained by Raha-Chowdhury et al. Aside from an HLA-A locus subregional deletion, no other structural perturbation of chromosome 6 has been reported in a patient with HFE.

In the present report, we describe a pedigree with HFE which carries an inv(6)(p21.1p23) chromosome. We show by cytogenetic and molecular genetic analysis the inheritance of this chromosome in this family and discuss the relevance of the chromosomal abnormality to the mapping of the HFE disease gene.

Materials and methods

In order to establish cell lines, 20 cc of peripheral blood was obtained from volunteer patients (consent forms, approved by the Institutional Review Board of the Pennsylvania State University College of Medicine (IRB Protocols No 93-140 EP) were reviewed and signed by all participants). Lymphocytes were purified from these samples using Ficoll-Paque Plus (Pharmacia, Uppsala, Sweden) according to the manufacturer’s protocol and immortalised with Epstein-Barr virus (EBV). Each line used in this study was then serologically typed for HLA-A and HLA-B antigens in the Milton S Hershey Medical Center’s Histocompatibility Laboratory.

Standard PHA stimulated lymphocyte chromosome preparations were made from peripheral blood lymphocytes from the proband and her brother. Karyotypes of the proband’s children were performed as part of a conventional amniocentesis protocol. Analysis of prometaphase chromosomes from the proband’s established B lymphocyte lines using GTG banding (Giemsa-trypsin) was performed as previously described. DNA was isolated from the proband’s cell line by conventional methods.

DNA was also obtained from paraffin-embedded tissue sections from archival (1992) necropsy material from the proband’s mother and from similar archival (1979) material from a prostate biopsy from the proband’s father. Ten μm sections were deparaffinised in xylene followed by proteinase K digestion at 55°C.
DNA was then purified by standard phenol-
chloroform extraction.
Polymerase chain reaction (PCR) analysis of DNA was performed using primers to amplify
12 polymorphic microsatellite markers spanning the MHC to D6S299 interval as described previously.8

Case report
The proband (patient 1.2) is a 43 year old, G2
P2002, premenopausal female with a history of
infertility and polycystic ovarian disease. Her
menstrual history was completely regular (28
day cycle, five day period) until the birth of
her children, when the cycle length shortened.
Following surgical removal of one ovary and
fallopian tube and wedge resection of the other
ovary, patient 1.2 became pregnant in 1985 by
artificial insemination and a routine amnio-
centesis performed during this pregnancy
showed a fetal 46,XX, inv(6)(p21.1p23) karyo-
type. Subsequent chromosomal analysis showed that the mother (proband) carried the
same inverted chromosome as the fetus. The
proband’s second pregnancy was without com-
lications; the healthy infant (born in 1987) also carried the inversion chromosome.
Apart from polycystic ovarian disease, the
proband had no other documented or sus-
pected medical problems until 1990. At that
time, a routine laboratory panel indicated se-
veral abnormal iron indices; these included a
raised total iron of 199 µg/dl (range 50–125 µg/
dl), total iron binding capacity of 210 µg/dl
(range 200–352 µg/dl), a transferrin saturation of
94.8% (range 20–55%), and a ferritin level of
107 ng/ml (range 10–300 ng/ml) in an other-
wise asymptomatic, healthy female. Over the
following year, these tests were repeated every
two months and on all occasions total iron and
transferrin saturation remained abnormally
high. During this period, the proband’s 82 year
old mother (patient 1.1) died and necropsy
showed cardiomegaly with underlying cardiac
fibrosis and hypertrophy, haemochromatosis
with diffuse 4+ hepatocellular iron deposition
evidenced through Prussian Blue staining based
upon a severity score range of 1–4+), and bronchopneumonia. The cause of death was at-
tributed to dysrhythmia. After considering the
maternal necropsy results and available data
which suggest that raised transferrin saturation is a sensitive and specific indicator of homo-
ygous haemochromatosis,15–17 the diagnosis of
idiopathic haemochromatosis in patient 1.2 was
assigned. The HFE disease status of the prob-
and’s dead father is not known.

The proband’s 57 year old brother (patient
1.3) was examined and noted to have an in-
creased total serum iron (195 µg/dl), an
increased transferrin saturation (77.4%), raised
levels of ferritin (484 ng/ml) and transferrin
(248 mg/dl), and a total iron binding capacity
of 252 µg/dl. Karyotype analysis showed that
he also carried the same paracentric inversion
as patient 1.2. The proband’s two children, carriers of the inversion chromosome, were also
tested and found to be normal with respect to
serum iron indices (serum iron of 86 and
85 µg/dl, total iron binding capacities of 294
and 309 µg/dl, transferrin saturations of 29.3
and 27.5%, and ferritin levels of 18 and 9 ng/
ml).

Both the proband and her brother are cur-
rently being treated by phlebotomy with ap-
propriate restoration of serum iron indices
towards normal values (table 1). Liver biopsies
have been offered and refused by both patients.

HLA, cytogenetic, and molecular genetic
results
Fourteen metaphase cells from the proband’s
immortalised lymphocytes were re-examined.
Representative chromosome 6 pairs are shown in
fig 1 and the paracentric inversion of chro-

Table 1 Response of proband (patient 1.2) to phlebotomy treatment. Following repeated abnormal serum iron indices, 1900 ml of blood were withdrawn over an almost two year period resulting in normalisation of iron parameters

<table>
<thead>
<tr>
<th>Date</th>
<th>Ferritin (10–190 ng/ml)</th>
<th>Iron (50–125 µg/ml)</th>
<th>TIBC (200–352 µg/ml)</th>
<th>Saturation (20–50%)</th>
<th>Phlebotomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1990</td>
<td>107</td>
<td>199</td>
<td>210</td>
<td>94.8</td>
<td></td>
</tr>
<tr>
<td>January 1991</td>
<td>108</td>
<td>217</td>
<td>219</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>September 1991</td>
<td>114</td>
<td>222</td>
<td>214</td>
<td>100 (<1000 ml)</td>
<td></td>
</tr>
<tr>
<td>September 1992</td>
<td>57</td>
<td>163</td>
<td>237</td>
<td>69</td>
<td><900 ml</td>
</tr>
<tr>
<td>July 1993</td>
<td>7</td>
<td>83</td>
<td>271</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Representative G banded chromosomes 6 from the proband. Pairs of G banded chromosomes are shown on the left; the chromosome carrying the paracentric inversion (inv(6)(p21.1p23)) is marked by an asterisk. An ideogram of chromosome 6 is shown. The breakpoints are indicated by arrows.
mosome 6 (inv(6)(p21.1p23)) was confirmed. A pedigree is presented in fig 2 along with HLA typing, karyotype, and transferrin saturation results. By combining the results of HLA haplotype and karyotype studies (fig 2), we determined that the inversion chromosome possesses the HLA-A24 and HLA-B51 MHC class I alleles.

The results of PCR microsatellite analysis of the proband and her parents are shown in table 2. Marker D6S265, located 70 kb centromeric to HLA-A18, is tightly linked to various HLA-A alleles. The occurrence of allele 1 in marker D6S265, in addition to other markers through D6S1260 (700 kb telomeric to D6S105), indicates that the proband inherited a "common" HFE HLA-A3 associated chromosome from her mother. The atypical HLA-A24 associated HFE inversion chromosome appears to be of paternal origin (fig 3).

Discussion

Mapping and positional cloning efforts to identify the HFE gene have recently accelerated. Several linkage disequilibrium studies and recombinant subjects have narrowed the HFE critical region to the genomic expanse between the HLA-F locus (centromeric) and the microsatellite marker D6S299 (telomeric). Results using geographically and ethnically different control and patient populations point towards different areas within this region.\(^5\)-\(^6\) Whether the breakpoints of the inversion chromosome reported here fall within this region is of prime interest.

The paucity of reported inversions associated with the short arm of chromosome 6 suggests an enhanced stability of such rearrangements within this region.\(^7\) Location of the MHC and the lack of meiotic recombination associated with certain HLA haplotypes supports this observation.\(^8\) Recombination in parancentric inversion heterozygotes is also reduced because acentric and deletion products resulting from crossing over within the inversion loop of meiotically paired homologous chromosomes are usually lost. The occurrence of this inversion in two sibs and in the children of the proband suggests that this particular chromosomal rearrangement has been stably transmitted through at least two generations.

The serological markers encoded by the polymorphic HLA genes could not conclusively predict the parental origin of the chromosome.
Haemochromatosis and inv(6)(p21.1p23)

This work was supported by grants from the Hackett Foundation (MJC), the March of Dimes (Basic Research Award) (MJC), the NIH (NIDDKD No 1 R01 DK43734-01A2 (MJC); HD 37480 (JHMK)), a Penn State College of Medicine Clinical Research Grant No 95-43 (GSG), and the Beth Israel Pathology Foundation, Inc (JHMK). The authors would like to thank Dr Jean-Yves Le Gall, Dr Roger Ladda, and Ms Padma Nandan for their helpful suggestions. The authors also thank the Departments of Pathology of Queen’s Medical Center of Honolulu (HA) and Prince George’s Hospital Center (CG) for archival material. Dr Masrig Krikker (President of the Haemochromatosis Foundation) and Ms Roberta Crawford (President of the Iron Overload Diseases Association, Inc) are also acknowledged for their continued interest and support.