LETTERS TO THE EDITOR

Psychological aspects of von Recklinghausen neurofibromatosis (NF1)

In the December 1995 issue of your journal, Robertson and colleagues reviewed the psychological aspects of NF1. They provided an excellent insight into many issues, such as the frequency of poor self-image and psychiatric disturbance. However, there have been a number of recent publications, which were not included in the review, and which provide a number of areas of consensus concerning the cognitive phenotype of patients with NF1.

(1) Mutations in the NF1 gene are associated with a lowering of IQ in at least, a subset of patients. The mean full scale IQ score (for a clinic derived population) is in the range of 90-94. Hoffman et al also reported a significant pairwise difference between each child with NF1 and an unaffected sib on full scale IQ, verbal IQ, and Judgement of Line Orientation (a test of visuospatial function).

(2) There is a slight increase in the incidence of mental retardation in NF1 (4-8%) compared to the general population.

(3) There are not appear to be a specific profile of learning disabilities in patients with NF1. There is no consistent discrepancy between verbal and performance IQ. The Judgment of Line Orientation (a test of visuospatial function) is consistently abnormal in all studies to date and thus, at some level, is a robust indicator of NF1 related neuropsychological deficits. However, language based learning problems (for example, reading and spelling) are more common than non-verbal learning deficits. Poor attentional and organizational skills affect performance in many areas, although increased distractability is not usually associated with hyperactivity.

(4) There have been a number of recent studies concerning the significance of areas of hypointense T2 signal on MRI (UBO or unidentified bright objects) in relation to cognitive deficits in patients with NF1. We found no statistical difference in overall IQ scores between the UBO+ and UBO- groups. However, when the results were analysed according to the site of increased T2 lesions, there was a significant association between deficits in IQ, memory, motor function, and attention and span T2 signal lesions in the thalamus and hypothalamus. Hoffman et al and Denckla et al found that the number and volume of T2 signal lesions were highly correlated with clinical deficits in IQ, learning, and other species of sibs. In addition they found an association between impaired visuospatial function (as shown in the Judgment of Line Orientation) and the volume of T2 signal lesions in the basal ganglia.

Although there appears to be some association between T2 signal lesions on MRI and cognitive deficits in patients with NF1, the exact nature of this association and its relationship to the number, volume, and location of lesions remains to be elucidated. The available evidence suggests that these T2 signal lesions represent areas of dysplastic gliosis and aberrant myelination in the developing brain. If the relationship between MRI lesions and cognitive deficits in NF1 is validated then this association may provide important insight into the pathogenesis of cognitive deficits in patients with NF1.

KATHRYN N NORTH
Royal Alexandra Hospital for Children, PO Box 3515, Parramatta, Sydney, NSW 2124, Australia


The male excess in Down’s syndrome

Mutton et al confirmed earlier reports of a male excess in cases of Down’s syndrome (DS). The cause of this excess is not established, but the best evidence is for sex selective spontaneous abortion: in their data, these cases numbered 63 males and 51 females.

I should like to suggest a cause of this excess. It is that in cases of DS, the timing of insemination in relation to ovulation is not optimal. It is widely believed (at least among non-geneticists) that timing of fruitful coitus within the human menstrual cycle is associated with offspring sex ratio, male zygotes being preferentially formed when the fruitful insemination is either early or late. In a meta-analysis of 30 studies, Gray estimated that fruitful inseminations around ovulation have a relative risk of only 90% of yielding males as contrasted with early or late inseminations. A similar phenomenon has been reported in other species, including dawn tailed deer, Barbary macaque, golden hamster, and Norway rat.

If the present hypothesis were true, one might expect an excess of DS in cases of rhythm failure. The evidence on this point is equivocal, but suspicion is raised by the reportedly high maternal age specific rates in children born to Catholic women.

WILLIAM H JAMES
The Galton Laboratory, University of London, Welson House, 4 Stephenson Way, London NW1 ZHE, UK


Predictive genetic testing in children

The paper by Michie et al (J Med Genet 1996;33:313-18) describes a situation which is likely to arise with increasing frequency as more dominantly inherited disorders become reliably detectable by molecular methods. The discussion focuses on the views of the parents and of the professionals but there is no word from the children. At the ages of 4 and 2 years they are too young to give their opinion, but perhaps a proxy should have done this for them.

For a few disorders (for example, retinoblastoma) screening starts in infancy but usually predictive testing for risk of malignant disease is done with a view to prevention of disease by regular surveillance into adulthood. We need to know whether this procedure is most likely to lead to a responsible attitude to the irksome and unpleasant screening regimen. Parents have their children’s best interests at heart but may find it difficult to remember that a 3-year-old’s year olds may develop into rebellious teenagers or into 20 year olds who know they are invincible. The poor compliance of diabetics at this stage of life is well known.

Instinct tells me that compliance is likely to be higher when the child has been actively involved in the decision on the timing of the test. Discussion of the need for a test at an early age, but let parent and child together await the result. A teenager may well...
resent a parent testing him or her "when you were too young to remember". Controlled surveys are unrealistic but we could discover the views of 5 to 20 year olds. Has anyone asked them?

A CAROLINE BERRY
Division of Medical & Molecular Genetics, Guy's Hospital, 7th Fl 8th Fls Guy's Tower, St Thomas Street, London SE1 NW7, UK

This letter was shown to Drs Michie and Marteau, who reply as follows.

Dr Berry raises several important questions concerning predictive genetic testing in children: the age at which a child's opinion about his/her own testing should be sought, whether a proxy should give an opinion in the case of a young child, and the extent to which a child should have a say in the decision about whether and when to be tested.

In the absence of data to inform these questions directly, research concerning children's informed consent in other areas can shed some light.1 The general trend over the last decade has been one of discovering greater competencies in young children than previously attributed2 and of giving young children a greater responsibility for decisions about, for example, their medical treatment and participation in research.

There is no universal agreement about whether parents should be allowed to make such decisions for their children and again, we lack the evidence of the impact on children and family life of parents either being allowed to make this decision or of not being allowed to make this decision. Our recent reported single case study suggested that the latter can lead to anger both within the family and with health professionals.3 Dr Berry argues that teenagers may resent having been tested as a child in the case study found resentment of not having been tested as a child. As Dr Berry states, we need more information about what children and teenagers think about these issues.

We are currently conducting a multicentre trial to investigate the psychological impact of predictive test results on children and their parents. Much more research is needed if we are to have an informed debate on these important issues.

SUSAN MICHIE
THESA MARTETEAU
Psychology & Genetics Research Group, UMDS, Ground Floor, Old Medical School Building, Guy's Campus, London SE1 9RT, UK


BOOK REVIEWS

If you wish to order or require further information regarding the titles reviewed here, please write to the Bookshop, PO Box 295, London WC1H 9JR. Tel 0171 383 6244. Fax 0171 383 6662. Books are supplied post free in the UK and for BFPO addresses. Overseas customers should add 15% for postage and packing. Payment can be made by cheque in sterling drawn on a UK bank or by credit card (Mastercard, Visa, or American Express) stating card number, expiry date, and full name. (The price and availability are occasionally subject to revision by the Publishers.)


As possession of the Y chromosome provides the clearest evidence for a genotype with a predisposition to antisocial behaviour, a possible subtitle for this could be "Adam and evil". The present volume aims to concentrate on an evaluation of non-Y linked genetic factors. As several contributors point out, an inclination to aggression is integral to our survival mechanism and thereby provides pitfalls for its simple genetic analysis. Criminality is not a biological characteristic, it is a social construct; labelling particular constellations of behaviours as "disorders" can therefore be unhelpful. Several other important reservations are addressed in this volume. For example, many would agree with Cairns (p55) that "there is a special folly in recent attempts to identify the 'gene' for aggressive behaviours, whether by the methods of molecular genetics or by pedigree analysis". I think we all recognise that behaviours are plastic and genetically rather intracable by virtue of their distance from the primary levels of gene function. In spite of these and other considerations, there are compelling reasons for investigating the role of genetic factors in antisocial behaviour. Many current experimental approaches are covered including animal models, reports of specific candidate loci, linkage mapping, and familial correlations. The proceedings conclude with highly readable chapters providing both evolutionary and sociological insights and a consideration of behavioural genetics in context of individual responsibility.

For my money, there is too much emphasis on previously reported attempts to assign the relative contribution of genes and environment through the interpretation of adoption and twin studies. Much of the text is also devoted to the discussions, which follow each chapter and each section; these could be extensively edited without significant loss. So, for those with a pressing schedule, it would be worth concentrating on the clear introduction and concise conclusions by Rutter. The contributions by Goldman and Brunner with a major emphasis on the contributions of molecular approaches are also highly recommended.

The chapter by Maxson provides a balanced account of the practical advantages and theoretical problems to be encountered in mouse models for human aggression. A very positive approach to the role is also taken by Cairns, who discusses aggression from a developmental perspective. One of the mainstays of animal studies has been linkage mapping, either of discrete traits or via support for quantitative trait loci (QTL). This approach has been notable recently through the identification of loci implicated in the aetiology of stress (Flint et al. Science 1995;269:1432-5). Another major contribution from animal studies is through "gene knock-out". The example discussed in this context is that of the 5-HT1Db serotonin receptor. Perhaps surprisingly, mice lacking these normal behaviours, although males show a twofold increase in frequency of attacks on intruders. While judgement should be suspended as to the consequences of equivalent aberrations in human behaviour, two more dramatic examples of neurodevelopmental defects resulting in aggression in "knock-out" mice have been reported recently for the monoamine oxidase, MAOA, and neuronal nitric oxide synthase, NOS1, genes.

It is instructive to note that the most direct and controversial implication of a gene defect in human aggressive behaviour also involves the MAOA locus (see chapter by Bruins and Brunner). In contrast, attempts to confirm the role of many candidate genes identified through allelic association have, in general, been unsuccessful. As noted by several contributors, marker association studies have often proved to be fragile and unreliable.

In conclusion, the symposium underscores how difficult it is to separate cultural, sociological, and emotional influences from hard science in behavioural studies. We can now hope that the rapid advances in molecular biology will increasingly enable the roles of specific candidate genes (such as MAOA) with small total impact, but with well-established psychopharmacological function, to be teased out. Evidence for the roles of both genes and environment and even for their interaction has been generally accepted for more than a decade. What emerges from the symposium is a fairly resounding confirmation of these general conclusions. The next 10 years should see some of the contributing factors hung on more specific pegs. So, although already dated, this proved to be worth reading by those involved in the field and particularly by the advanced guard of molecular biologists moving into this challenging area.

IAN CRAIG

This excellent pocket sized text book encompasses, very successfully, the fundamentals of genetics, functional aspects of genetics, and information about genomic organisation. It is aimed towards students of medical sciences and biology but would also be a very useful reference book for physicians who are beginning genetic research and who wish to read a basic but comprehensive text book.

The book has been written so that each page of text has opposite a full page of explanatory diagrams. These are all in colour and have been well thought out so that they complement the text. This makes the book easy to read and the information is very accessible. Instead of being put off by pages of turgid text full of jargon the reader feels encouraged to read on or at least to look at all the pictures!