LETTERS TO THE EDITOR

Psychological aspects of von Recklinghausen neurofibromatosis (NF1)

In the December 1995 issue of your journal, Mutton et al. reviewed the psychological aspects of NF1.1 They provided an excellent insight into many issues, such as the frequency of poor self-image and psychiatric disturbance. However, there have been a number of recent publications,2-6 which were not included in the review, and which provide a number of areas of consensus concerning the cognitive phenotype of patients with NF1.

(1) Mutations in the NF1 gene are associated with a lowering of IQ in at least, a subset of patients. The mean full scale IQ score (for a clinic derived population) is in the range of 90-94. Hoffman et al. also reported a significant pairwise difference between each child with NF1 and an unaffected sib on full scale IQ, verbal IQ, and Judgement of Line Orientation (a test of visuospatial function). This appears to be an association between the left shift in IQ and any clinical variable (such as clinical severity of disease, macrocephaly, or family history of NF1).7

(2) There is a slight increase in the incidence of mental retardation in NF1 (4-8%) compared to the general population.4

(3) At least 40% (and probably more) patients with NF1 have learning disabilities. In our study of 40 children (aged 8 to 16 years),5 65% had impaired performance (that is, more than 2 SD below the mean) on at least one test of academic achievement.

(4) There does not appear to be a specific profile of learning disabilities in patients with NF1. There is no consistent discrepancy between verbal and performance IQ. The Judgement of Line Orientation (a test of visuospatial function) is consistently abnormal in all studies to date and thus, at some level, is a robust indicator of NF1 related neuropsychological deficits. However, language based learning problems (for example, reading and spelling) are more common than non-verbal learning deficits. Poor attentional and organizational skills affect performance in many areas, although increased distractability is not usually associated with hyperactivity.2 5

There have also been a number of recent studies concerning the significance of areas of hyperintense T2 signal on MRI (UBO or unidentified bright objects) in relation to cognitive deficits in patients with NF1.2 4 6 In our study,7 children with areas of increased signal intensity on MRI (UBO+) had significantly lower IQ scores than children without these lesions. However, the association between “UBOs” and learning disabilities remains controversial. Moore' found no statistical difference in overall IQ scores between the UBO+ and UBO- groups. However, when the results were analysed according to the site of increased T2 lesions, there was a significant association between deficits in IQ, memory, motor function, attention and spares signal T2 lesions in the thalamus and hypothalamus. Hoffman et al.2 and Dendeka et al. found that the number and volume of T2 signal lesions were highly correlated, but in other species, no relationship was found between the number of T2 signal lesions and the volume of T2 signal lesions in the basal ganglia.

Although there appears to be some association between T2 signal lesions on MRI and cognitive deficits in children with NF1, the exact nature of this association and its relationship to the number, volume, and location of lesions remains to be elucidated. The available evidence suggests that these T2 signal lesions represent areas of dysplastic gliosis and aberrant myelination in the developing brain.10 If the relationship between MRI lesions and cognitive deficits in NF1 is validated then this association may provide important insight into the pathogenesis of cognitive deficits in patients with NF1.

KATHRYN N NORTH
Royal Alexandra Hospital for Children, PO Box 3515, Parramatta, Sydney, NSW 2124, Australia

7 Moore BD, NF1, cognition and MRI. Neurology 1995;45:1029.

The male excess in Down’s syndrome

Mutton et al.1 confirmed earlier reports of a male excess in cases of Down’s syndrome (DS). The cause of this excess is not established, but is not to be sex selective spontaneous abortion: in their data, these cases numbered 63 males and 51 females.

I should like to suggest a cause of this excess. It is that in cases of DS, the timing of insemination in relation to ovulation is not optimal. It is widely believed (at least among non-geneticists) that the timing of sexual coitus within the human menstrual cycle is associated with offspring sex ratio, male zygotes being preferentially formed when the fruitful insemination is either early or late. In a meta-analysis of 167 studies, Gray estimated that fruitful inseminations around ovulation have a relative risk of only 90% of yielding males as contrasted with early or late inseminations. A similar phenomenon has been reported for many other species, such as white tailed deer,1 Barbary macaque,2 golden hamster,3 and Norway rat.4

If the present hypothesis were true, one might expect a male excess of DS in cases of rhythm failure. The evidence on this point is equivocal,5 but suspicion is raised by the reportedly high maternal age specific rates in children born to Catholic women.6

WILLIAM H JAMES
The Galton Laboratory, University of London, Wellington House, 4 Stephens Way, London NW1 2HE, UK


Predictive genetic testing in children

The paper by Michie et al (J Med Genet 1996;33:313-18) describes a situation which is difficult to resolve with increasing assurance, as more dominantly inherited disorders become reliably detectable by molecular methods. The discussion focuses on the views of the parents and of the professionals but there is little from the children. At the ages of 4 and 2 years they are too young to give their opinion, but perhaps a proxy should have done this for them.

For a few disorders (for example, retinoblastoma) surveillance starts in infancy but usually predictive testing for risk of malignant disease is done with a view to prevention of disease by regular surveillance and treatment. We need to know whether this procedure is likely to lead to a responsible attitude to the irksome and unpleasant screening regimens. Parents have their children’s best interests at heart but may find it difficult to remember from childhood that a young child’s year olds may develop into rebellious teenagers or into 20 year olds who know they are invincible. The poor compliance of diabetics at this stage of life is well known.

Instinct tells me that compliance is likely to be higher when the child has been actively involved in the decision on the timing of the test. Discussion of the need for a test can be only the early age, but let parent and child together await the result. A teenager may well
BOOK REVIEWS

If you wish to order or require further information regarding the titles reviewed here, please write to: Reviews Section, HMSO Bookshop, PO Box 295, London WC1H 9JR. Tel 0171 383 6244. Fax 0171 383 6662. Books are supplied free in the UK and for BFPO addresses. Overseas customers should add 15% for postage and packing. Payment can be made by cheque in sterling drawn on a UK bank or by credit card (Mastercard, Visa, or American Express) stating card number, expiry date, and full name. (The price and availability are occasionally subject to revision by the Publishers.)


As possession of the Y chromosome provides the clearest evidence for a genotype with a predisposition to antisocial behaviour, a possible subtitle for this could be "Adam and evil". The present volume, however, mainly concentrates on an evaluation of non-Y linked genetic factors. As several contributors point out, an inclination to aggression is integral to our survival mechanism and thereby provides pitfalls for its simple genetic analysis. Criminality is not a biological characteristic, it is a social construct; labelling particular constellations of behaviours as "disorders" can therefore be unhelpful. Several other important reservations are addressed in this volume. For example, many would agree with Cairns (p55) that "there is a special folly in recent attempts to identify the 'gene' for aggressive behaviours, whether by the methods of molecular genetics or by pedigree analysis". I think we all recognise that behaviours are plastic and genetically rather intracable by virtue of their distance from the primary levels of gene function. In spite of these and other considerations, there are compelling reasons for investigating the role of genetic factors in antisocial behaviour. Many current experimental approaches are covered including animal studies, linkage evaluation of specific candidate loci, linkage mapping, and familial correlations. The proceedings conclude with highly readable chapters providing both evolutionary and sociological insights and a consideration of behavioural genetics in context of individual responsibility.

For my money, there is too much emphasis on previously reported attempts to assign the relative contribution of genes and environment through the interpretation of adoption and twin studies. Much of the text is also devoted to the discussions, which follow each chapter and each section; these could be extensively edited without significant loss. So, for those with a pressing schedule, it would be worth concentrating on the clear introduction and concise conclusions by Rutter. The contributions by Goldman and Brunner with a major emphasis on the contributions of molecular approaches are also highly recommended.

The chapter by Maxson provides a balanced account of the practical advantages and theoretical problems to be encountered in mouse models for human aggression. A very positive approach to the role is taken by Cairns, who discusses aggression from a developmental perspective. One of the mainstays of animal studies has been linkage mapping, either of discrete traits or via surrogates for quantitative trait loci (QTL). This approach has been notable recently through the identification of loci implicated in the aetiology of stress (Flint et al. Science 1995;269:1432-5). Another major contribution from animal studies is through "gene knock-out". The example discussed in this context is that of the 5-HT1Db serotonin receptor. Perhaps surprisingly, mice lacking this receptor show normal behaviours, although males show a twofold increase in frequency of attacks on intruders. While judgement should be suspended as to the consequences of equivalent aberrations in human behaviour, two more dramatic examples of neurotransmission defects resulting in aggression in "knock-out" mice have been reported recently for the monoamine oxidase, MAOA and neuronal nitric oxide synthase, NOS1, genes. It is instructive to note that the most direct and controversial implication of a gene defect in human behaviour also involves the MAOA loci (see page 263). In contrast, attempts to confirm the role of many candidate genes identified through allelic association have, in general, been unsuccessful. As noted by several contributors, marker associations have often proved to be fragile and unreliable.

In conclusion, the symposium underscores how difficult it is to separate cultural, sociological, and emotional influences from hard science in behavioural studies. We can now hope that the rapid advances in molecular biology will increasingly enable the roles of specific candidate genes (such as MAOA) with small total impact, but with well-established psychopharmacological function, to be teased out. Evidence for the roles of both genes and environment and even for their interaction has been generally accepted for more than a decade. What emerges from the symposium is a fairly resounding confirmation of these general conclusions. The next 10 years should see some of the contributing factors hang on more specific pegs. So, although we are already dazed, these proceedings are worth studying by those involved in the field and particularly by the advanced guard of molecular biologists moving into this challenging area.

IAN CRAIG


This excellent pocket sized text book encompasses, very successfully, the fundamentals of genetics, functional aspects of genetics, and information about genomic organisation. It is aimed towards students of medical sciences and biology but would also be a very useful reference book for physicians who are beginning genetic research and who wish to read a basic but comprehensive text book.

The book has been written so that each page of text has opposite a full page of explanatory diagrams. These are all in colour and have been well thought out so that they complement the text. This makes it very easy to read and the information is very accessible. Instead of being put off by pages of turgid text full of jargon the reader feels tenable encouragement to read on or at least to look at all the pictures.