German family study on hereditary breast-ovarian cancer

Ute Hamann, Heiko Becher, Thomas Zimmermann, Kristina Pella, Gunther Bastert, Jenny Chang-Claude

Abstract

An estimated 5% to 10% of all breast and ovarian cancers are attributed to dominant susceptibility genes. Two such genes, BRCA1 and BRCA2, were recently identified. The involvement of these genes was studied in 43 German breast only and breast-ovarian cancer families. All families contained three or more cases of breast or ovarian cancer, with at least two diagnosed under the age of 60 years. Multipoint linkage analysis gave a maximum lod score of 2.13 at the BRCA1 locus under the assumption of genetic heterogeneity, with an estimated 50% of families being linked. Among the 33 breast only cancer and 10 breast-ovarian cancer families, the estimated proportions of linked families were 35% and 75%, respectively. Sixteen families with at least four cases of female breast cancer diagnosed under the age of 60 years, or male breast cancer diagnosed at any age, were analysed for linkage to BRCA2. Positive lod scores at BRCA2 were obtained in six families.

BRCA1 germline mutations are estimated to account for 40% to 50% of early onset female breast cancer families and most breast and ovarian cancer families.11,12 The cumulative breast cancer risk in BRCA1 gene carriers has been estimated to be 51% by the age of 50 and 85% by the age of 70, and the ovarian cancer risk to be 23% by the age of 50 and 63% by the age of 70.13 Mutations in BRCA2 confer a similar risk to female breast cancer as BRCA1, with an estimated risk of 87% by the age of 80. However, the risk of male breast cancer appears to be substantially higher and the risk of ovarian cancer lower.4

Genetic heterogeneity concerning BRCA1 involvement has been observed in seven Icelandic and 11 Japanese breast/ovarian cancer families with 30% and 0% of families being linked, respectively.14,15 However, these estimates may be influenced by a selection bias.

In order to analyse genetic heterogeneity of breast cancer resulting from BRCA1 and BRCA2, 43 German breast/ovarian cancer families were analysed by linkage analysis.

Material and methods

FAMILIES

Families were collected from all regions in Germany. Kindreds were ascertainment on the basis of the presence of breast cancer or ovarian cancer in at least three family members. Forty-three families fulfilling a further criterion of including at least two cases diagnosed under the age of 60 years were included in this study. The disease status of all other family members was ascertained by questionnaire and further contact by telephone. Pathology records were requested in every case and were available for 117 of the 176 breast cancer cases including three male breast cancer cases and 10 of the 15 ovarian cancer patients.

DNA ANALYSIS

Genomic DNA was isolated by proteinase K digestion and standard phenol/chloroform extraction. Genotypes were analysed at three to six chromosome 17q loci and three 13q loci. The loci analysed were D17S250, THRA1, D17S800, D17S855, D17S579, and D17S588 on chromosome 17q and D13S289, D13S260, and D13S267 on chromosome 13q.11,16,17 All...
markers represented CA repeat polymorphisms with a high frequency of heterozygosity. PCR conditions for amplification were according to Weber and May. Alleles were separated on denaturing sequencing gels and blotted onto a nylon membrane. One of the PCR primers was end labelled with (γ32P)-ATP using T4 polynucleotide kinase and hybridised to the amplified alleles on a nylon filter. Alleles were detected by autoradiography.

STATISTICAL METHODS

Multipoint linkage analyses were carried out using the LINKAGE program, under the assumption of an autosomal dominant disease gene with a gene frequency of 0.003, conferring breast cancer risks corresponding to the model of Claus et al. and specific penetrances as implemented by Easton et al. For BRCA1, lod scores were generated by multipoint analysis of D17S250 and D17S588, or THRA1 and D17S588, or D17S579 and the disease locus, and for BRCA2, D13S289 and D13S260, or D13S260 and D13S267 and the disease locus. Analyses of heterogeneity of linkage for various subgroups of families were performed using the HOMOG program.

Results

CLINICAL RESULTS

The 43 cancer families studied for linkage included 10 breast-ovarian cancer families and 33 breast only cancer families. Each family contained at least three breast or ovarian cancer patients of whom at least two were diagnosed before the age of 60 years. The age of onset of the disease ranged between 19 and 81 years for breast cancer and between 39 and 67 years for ovarian cancer. The average age at diagnosis was below the age of 45 years in 13 families, between 45 and 55 years in 22 families, and above 55 years in eight families. There were 176 breast cancers including three male breast cancers and 15 ovarian cancers in these families. The distribution of breast and ovarian cancers in these families is shown in table 1.

MULTIPOINT LINKAGE ANALYSIS AND GENETIC HETEROGENEITY

A total of 419 subjects including 114 cases with breast cancer and four patients with ovarian cancer were genotyped at three to six 17q loci and 170 subjects from 16 families at three 13q loci. Results from multipoint linkage analyses at BRCA1 and BRCA2 are shown in table 2. Six breast-ovarian (GF 02, GF 19, GF 22, GF 35, GF 36, GF 72) and six breast only cancer families (GF 08, GF 13, GF 24, GF 34, GF 60, GF 74) yielded positive lod scores between 0.25 and 1.14 at the BRCA1 locus. One breast-ovarian cancer family (GF 76) and five breast only cancer families (GF 26, GF 37, GF 39, GF 41, GF 69) gave negative lod scores between -0.56 and -1.16. Of the remaining 25 families, lod scores were between -0.44 and -0.21.

The results of the multipoint heterogeneity analysis for BRCA1 are given in table 3. When the 43 families are considered together there is some evidence for genetic heterogeneity with an estimated 50% being linked (lod-1 support interval 10%-85%) and a maximum lod score of 2.13 at the BRCA1 locus. Among the breast-ovarian cancer families an estimated 75% were linked with a maximum lod score of 1.67, compared with 35% of the breast only cancer families with a maximum lod score of 0.68. The corresponding lod-1 support regions for both groups are large and span almost the total range for α ∈ [0, 1].

Linkage analysis with BRCA2 markers yielded lod scores between 0.31 and 0.67 in two breast-ovarian cancer (GF 11, GF 36) and two breast only cancer families (GF 13, GF 21).
German family study on hereditary breast-ovarian cancer

Table 3 Multipoint heterogeneity analysis for BRCA1

<table>
<thead>
<tr>
<th>Group (No. of families)</th>
<th>Lod score</th>
<th>Proportion linked</th>
</tr>
</thead>
<tbody>
<tr>
<td>All families (43)</td>
<td>2.13</td>
<td>0.50</td>
</tr>
<tr>
<td>Breast-ovarian cancer families (10)</td>
<td>1.67</td>
<td>0.75</td>
</tr>
<tr>
<td>Breast only cancer families (33)</td>
<td>0.68</td>
<td>0.35</td>
</tr>
</tbody>
</table>

33), between -0.5 and -0.92 in three breast-ovarian cancer families (GF 02, GF 19, GF 76) and three breast only cancer families (GF 08, GF 69, GF 74), and between -0.27 and 0.09 in the remaining families (table 2).

In two families (GF 13, GF 36) lod scores were positive at both BRCA1 and BRCA2. In both families lod scores at BRCA1 (0.68, 0.78) were greater than at BRCA2 (0.31, 0.67). These families including two families with male breast cancers (39, 69, 76) yielded negative lod scores at both loci.

Discussion

The genetic analysis reported here provides some evidence for linkage of at least a proportion of breast only cancer families and breast-ovarian families to either BRCA1 or BRCA2. Under the heterogeneity model the multipoint lod score was 2.13 at BRCA1 in 43 families. Six of 16 families studied yielded positive lod scores at the BRCA2 locus. There was some evidence of genetic heterogeneity with 35% breast only cancer families and 75% breast-ovarian cancer families estimated to be linked to BRCA1.

For most families, the individual lod scores were too small to allow a conclusion as to the presence or absence of linkage to either BRCA1 or BRCA2. Linkage evidence obtained in these families was weak either because the families were small or because affected subjects had died and no blood samples were available for genotype analysis. Interpretation of genetic linkage results may be further complicated by the presence of spurious breast or ovarian cancer cases occurring in these families.

We found three breast only cancer families with weak evidence against linkage with BRCA1 as well as BRCA2 suggesting the existence of an additional gene(s) conferring susceptibility to breast cancer. The male breast cancer risk in BRCA2 mutation carriers has been reported to be small but probably greater than in male BRCA1 mutation carriers. Two of our families with weak evidence against linkage to both genes contained individual cases of affected males. These data suggest that another gene besides BRCA1 and BRCA2 may be involved in the pathogenesis of male breast cancer. The ovarian cancer risk was reported to be higher in BRCA1 mutation carriers than in BRCA2 mutation carriers. Two of our breast-ovarian cancer families including one case of ovarian cancer showed evidence for linkage to 13q loci suggesting that BRCA2 may be involved in these families.

Risk estimates in families with small lod scores will rely more heavily on the a priori probability of linkage. For this reason it is important to know with what probability different types of families are linked to BRCA1. Our results of 35% linked breast only cancer families and 75% linked breast-ovarian cancer families are in agreement with the estimations of The Breast Cancer Linkage Consortium with a 45% a priori probability of linkage for breast only cancer families and an 85% a priori probability for breast-ovarian cancer families. Since predictive testing is only appropriate in families where the linkage evidence is conclusive, disease carriers in our collection of breast only cancer and breast-ovarian cancer families have to be identified by detection of BRCA1 and BRCA2 germline mutations.

We thank the family members for their participation and the clinicians and pathologists for their help in collecting the material. We also thank Dr Nancy Eby for critically reading the manuscript. Ursula Eiber and Andreas Beckenbach for excellent documentation and data management, and Claudia Soeger, Thomas Bruch, and Thorsten Kuiper for expert technical assistance. This work was supported by the Deutsche Krebshilfe e V / Mildred Scheel Foundation.