Partial duplication of 3q and distal deletion of 11q in a stillbirth with an omphalocele containing the liver, short limbs, and intrauterine growth retardation

Chih-Ping Chen, Fen-Fen Liu, Sheau-Wen Jan, Chie-Pein Chen, Chung-Chi Lan

Abstract
We describe a female stillbirth with duplication of 3q21→qter and deletion of 11q23→qter resulting from an unbalanced segregation of a maternal t(3;11) reciprocal translocation. The proband had some of the clinical features consistent with those seen in patients with dup(3q) syndrome or distal del(11q) syndrome. Prenatal sonographic examination showed short limbs, intrauterine growth retardation, and an omphalocele containing the liver.

(J Med Genet 1996;33:615-617)

Key words: omphalocele; dup(3q); del(11q).

Patients with dup(3q) syndrome usually have duplicated 3q segments within the region of 3q21→qter and manifest mental and growth retardation, as well as multiple congenital anomalies, some of which overlap with Brachmann-de Lange syndrome, for example, brachycephaly, synphrys, antverted nares, downturned corners of the mouth, micrognathia, and high arched palate. The common congenital anomalies associated with 3q duplications are congenital heart defects (septal defects), renal malformations (polycystic kidneys or dysplasia), ocular malformations (strabismus, nystagmus, cataract, colobomas, and iris anomalies), and limb anomalies (hypoplasia of the phalanges, camptodactyly, and clinodactyly). The duplications of 3q21→qter in most patients are the products of unbalanced segregations of balanced parental rearrangements involving other chromosomes and thus present with other chromosome aberrations. Only a few are de novo events with pure dup(3q). Despite the cytogenetic differences, the phenotypes are similar in cases with familial or de novo dup(3q).

Recently, the critical region responsible for the typical dup(3q) phenotype has been localised to the interval 3q26.3-q27 or 3q26.31-q27.3. Patients with del(11q) syndrome commonly have deletions of 11q23→qter and manifest developmental delay, psychomotor retardation, craniofacial dysmorphism (trigonocephaly, hypertelorism, a broad and flat nasal bridge, carpal shaped mouth, high arched palate, micrognathia, and low set, malformed ears), congenital heart defects (ventricular septal defects, truncus arteriosus, and aortic arch defects), renal anomalies (renal duplication and hydronephrosis), ocular malformations (ptosis, coloboma, strabismus, and telecanthus), limb anomalies (talipes equinovarus, clino- or camptodactyly, syndactyly, and palmar simian crease), and a short neck and widely spaced nipples. The distal 11q deletions in most patients have arisen de novo, but other cases have arisen as ring chromosome 11[10-12] interstitial deletion of 11q23→q25[13] and unbalanced rearrangements involving chromosome 11 and other chromosomes also showed phenotypes typical of the distal deletion (11q) syndrome. The subband critical for the distal del(11q) syndrome is believed to be 11q24.1.[13,15]

The combination of duplication of 3q21→qter and deletion of 11q23→qter has not previously been described. Here, we report a stillbirth with this chromosomal constitution and an omphalocele containing the liver.

Case report
The proband was stillborn at 35 weeks’ gestation with a weight of 1568 g, and a length of 42 cm. She was the second child of a 24 year old woman and a 33 year old man. The parents are Chinese, non-consanguineous, and healthy. The mother had had one 3 year old healthy child and one miscarriage. She had a normal maternal serum ß-fetoprotein (AFP) level with multiples of the median of 0.91 and a normal maternal serum free ß human chorionic gonadotrophin (ß-hCG) level with multiples of the median of 0·58 at 15 weeks’ gestation. Her pregnancy with this child was uneventful except that intrauterine growth retardation and short femoral length were noted during the third trimester. Prenatal sonography at 22 weeks’ gestation showed a biparietal diameter of 5·6 cm (22 weeks), a femur length of 3·4 cm (20 weeks), and an abdominal circumference of 16·5 cm (21 weeks). At 33 weeks’ gestation, the biparietal diameter was 8·2 cm (33 weeks), but the femur length of 4·9 cm (26 weeks) and the abdominal circumference of 23·6 cm (28 weeks) were significantly below the normal range. At 35 weeks’ gestation, ultrasonography indicated intrauterine fetal death and a small omphalocele containing the liver.

Physical examination of this stillbirth indicated that her birth height and weight were below the 5th centile. She had a prominent,
Cytogenetic study was performed on Giemsa banded chromosomes from cultured chorionic villi cells and showed an abnormal chromosome 11 (fig 3). The proband's mother was found to have a reciprocal translocation between chromosomes 3 and 11, 46,XX,t(3;11)(q21;q23) (fig 4). Owing to an unbalanced segregation of this t(3;11), the proband had two normal chromosomes 3, one normal chromosome 11, and one derivative chromosome 11 resulting in duplication of chromosome 3q21→qter and deletion of chromosome 11q23→qter: 46,XX, der(11),t(3;11)(q21;q23)mat. The father had a 46,XY karyotype.

Discussion
Our patient had a dup(3q)/del(11q), which involved the critical regions of both dup(3q) and distal del(11q) syndromes, and thus manifested some of the characteristic features of dup(3q)/del(11q) such as hypertichosis, trigonocephaly, hypertelorism, epicanthic folds, a carp shaped mouth, broad nasal bridge, micrognathia, anteverted nostrils, malformed, low set ears, widely spaced nipples, short neck, palmar simian creases, and talipes equinovarus. The short femoral length, intrauterine growth retardation, and omphalocele were obvious on ultrasonographic examinations. Prenatally, we did not detect any associated cardiac or renal malformations, although congenital heart defects are common in both dup(2q) and distal del(11q) syndromes. The life span of patients with a dup(3q) is variable and depends on the associated internal malformations.1 In the distal del(11q) syndrome, the majority of deaths in infancy are attributable to severe congenital heart defects, but in patients without cardiac disease or with successful treatment, the prognosis for survival is fair.7 The intrauterine fetal death in our case, however, suggests that the combination of these two syndromes is more detrimental.

The unusual feature in this case was the associated malformation of omphalocele with an extracorporeal liver. Chromosomal abnormalities have been reported in 10 to 40% of neonates with omphalocele, with a combined mean rate of 12%.16 Trisomy 18 and 13 are the most common chromosomal abnormalities but other aberrations such as trisomy 21, 45,X, triploidy, 47,XXX, 47,XXX, dup(1q), dup(3p), del(3p)/dup(3q), del(4p), del(4q), dup(4q), dup(5p), dup(6q), del(6q), del(7q), del(9p), inv(11), dup(15q), del(17p), dup(17q), and i(18q) have also been reported.16-18 It is possible that the omphalocele and dup(3q)/del(11q) in our patient were purely coincidental. The relationship between omphalocele and both dup(3q) and distal del(11q) syndromes remains to be determined.

Several reports suggest that karyotypic abnormalities are more common in association with an omphalocele that contains only bowel compared with those that contain only liver.19-21 22 27 28 Moreover, the abnormal karyotypes in fetuses whose omphalocele contained only bowel were mostly full aneuploidies such as trisomy 18, 13, 21, 45,X, and 47,XXX.
except one case with a karyotype of 46,XY, 
-18, +i(18q).10 Getachew et al.29 described an 
ophalmocele containing the liver in a fetus with 
an inversion of chromosome 11. Whether full 
or partial aneuploidies are associated with the 
difference in omphalocoele content is unclear 
and will require additional cases and infor-
mation to be elucidated.

1 Steinbach P, Adkins WN Jr, Caspar H, et al. The dup(3q) 
syndrome: report of eight cases and review of the literature. 
2 McKusick VA. Mendelian inheritance in man. 10th ed. Bal-
3 Fryns JP. Chromosome 3, trisomy 3q2. In: Buyse ML, ed. 
Birth defects encyclopedia. Cambridge: Blackwell Scientific 
4 Gustashaw K, Crowe C, Dickerman L, Golden W, Johnson 
W. Dup(3q)21-q29 in a male due to a de novo duplication 
H. Duplication 3q: severe manifestations in an infant with 
a duplication of a short segment of 3q. Am J Med Genet 
6 Ismail SR, Kousset BF, Korb SM, Kholeif SS. Duplication 
3(q23)11pter) without limb anomalies. Am J Med Genet 
7 Fryns P, Baldini A. Subchromosomal band interval mapping 
and ordering of DNA markers in the region 3q26.3-q27 
involved in the dup(3q) syndrome. Genomics 1994;24: 
580-2.
8 Aqua MS, Rizzi P, Lindsay EA, et al. Duplication 3q 
syndrome: molecular delineation of the critical region. Am 
9 Donnellen AE, Zaccai E, Emmanuel BS. Chromosome 
11;monosomy 11q. In: Buyse ML, ed. Birth defects en-
cyclopedia. Cambridge: Blackwell Scientific Publications, 
1990;360-5.
11 Cousineau A, Higgins JC, Scott-Emvalogor AB, Mody G. 
Ring-11 chromosome: phenotype-karyotype correlation 
12 Nikawa N, Jinno T, Tomyaasu T, et al. Ring chromosome 11 
(46,XX,r(11)(p15q23)) associated with clinical features of 
13 Fryns JP, Kleczkowa A, Buttiens M, Marien P, van den 
Berge H. Distal 11q monosomy: The typical 11q mono-
sony syndrome is due to deletion of sub-band 11q24.1. 
14 Jacobsen PM, Hauge H, Henningsen N, Hobolt N, Mikkel-
sen M, Philip J. An (11;21) translocation in four gen-
eration with chromosome 11 abnormalities in the 
15 O’Hare AE, Grace E, Edmunds AT. Deletion of the long 
arm of chromosome 11 (46,XX,del(11)(24.1-pter)). Clin 
16 Nyberg DA, Mack LA. Abdominal wall defects. In: Nyberg 
DA, Mahony BS, Pretorius DH, eds. Diagnostic ultrasound 
of fetal anomalies. Chicago: Year Book Medical Publishers, 
1989;346.
17 Gilbert WM, Nikolaides KH. Fetal omphalocoele: associated 
malformations and chromosomal defects. Obstet Gynecol 
1987;70:633-5.
18 Hauge M, Bugge M, Neilsen J. Early prenatal diagnosis of 
ophalmocele constitutes indication for amniocentesis. 
Lancet 1983;i:507.
abnormalities in fetuses with omphalocoele. Significance of 
20 Lacro RV, Jones KL, Mascarella JT, Jones OW, Wilson N, 
Jones MC. Duplication of distal 15q: report of five new 
cases from two different translocation kindreds. Am J Med 
21 Hughes MD, Nyberg DA, Mack LA, Pretorius DH. Fetal 
ophalmocele: prenatal US detected of concurrent an-
omalies and other predictors of outcome. Radiology 1989; 
22 De Vescia M, Major CA, Porto M. Prediction of an 
abnormal karyotype in fetuses with omphalocoele. Prenat 
23 Sermers, Benitez RJ, Pilton L, Carr M, Skidmore M. 
Prenatal diagnosis and management of congenital defects 
156:308-12.
24 Gou-Cruz D, Canti JM, Chromosome 9, monosomy 9p. 
In: Buyse ML, ed. Birth defects encyclopedia. Cambridge: 
25 Chen H, Gershman JJ, Mailhes JB, et al. Omphalocoele and 
26 Schnorr A. Catalogue of unbalanced chromosome aberrations 
27 Benacerraf BR, Saltzman DH, Estoff JA, Frigolatto FD. 
Abnormal karyotype of fetuses with omphalocoele: pred-
cision based on omphalocoele contents. Obstet Gynecol 
28 Getachew MM, Goldstein RB, Edge V, Goldberg JD, Filly 
RA. Correlation between omphalocoele contents and kary-
otypic abnormalities: sonographic study in 37 cases. AJR 