Evidence for compound heterozygosity causing mild and severe forms of autosomal recessive spinal muscular atrophy

Kevin Talbot, Nanda Rodrigues, Gunther Bernert, Reginald Bittner, Kay Davies

Abstract

Spinal muscular atrophy is an autosomal recessive disease of motor neurone degeneration which shows a variable phenotype. Two candidate genes show deletions in affected subjects but with no distinction between different forms of the disease. We report an unusual family in which mild and severe SMA coexists and patients are deleted for the SMN gene. The father is affected with late onset SMA; therefore this family shows pseudodominant inheritance. When typed using closely linked flanking markers the severely affected son does not share the same haplotype as his sib, who is deleted for SMN but shows no signs yet of SMA. This supports the hypothesis that differences in SMA phenotype can be explained by a multiple allele model.

(J Med Genet 1996;33:1019–1021)

Key words: spinal muscular atrophy (SMA); survival motor neurone gene (SMN); compound heterozygosity.

The autosomal recessive group of proximal spinal muscular atrophies (SMA) of childhood (types I-III), in which there is widespread death of motor neurones leading to weakness and wasting of voluntary muscle,¹ have all been mapped to the same region of chromosome 5q13.² Three candidate genes which show deletions in patients have been cloned from the region. The survival motor neurone gene (SMN) is deleted in >95% of affected people² and the neuronal apoptosis inhibitory protein gene (NAIP) is deleted in 45% of severely affected (type I) patients but only 18% of mildly affected patients (types II and III).³ Recent evidence has suggested that the paternal grandmother was typed for the deletions in the SMN and NAIP genes using the polymerase chain reaction as previously described.⁴ Closely linked flanking microsatellite markers were used to assess which chromosome had been inherited by each child. These typings are shown in fig 1.

Discussion

The clinical features as described conform to a diagnosis of type II SMA in the affected child and to type IV SMA in the father. Both are deleted for exons 7 and 8 of the SMN gene which makes it overwhelmingly likely that this family has chromosome 5 linked autosomal recessive SMA. Variation in the severity of the disease within a family has been described but such an extreme difference as exists here is unusual. The apparent autosomal dominant transmission is explained by the father being a homozygote and the mother being a heterozygote. Offspring of this pairing will thus have a 1 in 2 chance of being homozygous for the disease mutation and pseudodominant transmission will occur. Pseudodominant inheritance in SMA families has previously been...
difference in phenotype they have shared identical haplotypes, suggesting that genetic influences outside the immediate SMA region may contribute to the variation in phenotype in these families.11-13

This family provides strong support for the multiple allele model of SMA, proposed by Becker, which predicted both the rare occurrence of pseudodominance and the appearance of extreme differences in phenotype in one family.14 The model depends on the presence of a common normal allele which in combination with any of a number of rare mutant alleles will give the various forms of the disease. Unusual pedigrees such as the one described in this study arise when a person carrying two of the rare mutant alleles produces offspring with a heterozygous carrier. Alternatively, given the intrinsic instability of this region of the genome, it may be the case that the father is carrying similar alleles but that one of these has undergone an additional mutation during spermatogenesis. In this way his offspring may show discordance owing to germline mosaicism. In keeping with the idea of germline instability, it has been shown that de novo deletions do occur.16,17

Deletions in the SMN gene have proved to be specific for autosomal recessive SMA but no explanation at the molecular genetic level exists for the observed differences in phenotype. In families where conventional autosomal recessive inheritance is observed, all affected offspring will have inherited the same disease carrying chromosomes. In this family two sibs, both with identical deletions in the SMN gene, have inherited different disease carrying chromosomes from their father.

In summary, this family is unusual because there are two generations with affected subjects. Furthermore there is an extreme polarisation in the severity of the observed phenotype. Further analysis of the molecular genetic difference between the affected subjects may help to elucidate the basis of this phenotypic difference.

This work is supported by the Medical Research Council, the Muscular Dystrophy Association (USA), and the Muscular Dystrophy Group (UK).

References

Compound heterozygosity causing mild and severe autosomal recessive spinal muscular atrophy