Improved genetic mapping of X linked retinoschisis

N D L George, S J Payne, R M Bill, D E Barton, A T Moore, J R W Yates

Abstract

X linked retinoschisis (RS) causes poor vision in affected males owing to radial cystic changes at the macula. Genetic linkage analysis was carried out in 16 British families with X linked retinoschisis using markers from the Xp22 region. Linkage was confirmed between the RS locus and the markers DXS207 (lod score, Zmax = 17.9 at recombination fraction \(\theta = 0.03 \); confidence interval for \(\theta = 0.007-0.09 \)), DXS1053 (Zmax = 18.0 at \(\theta = 0.01 \), CI = 0.001-0.06), DXS43 (Zmax = 12.9 at \(\theta = 0.03 \), CI = 0.004-0.09), DXS1195 (Zmax = 6.4 at \(\theta = 0.00 \)), DXS418 (Zmax = 8.2 at \(\theta = 0.00 \)), DXS999 (Zmax = 21.2 at \(\theta = 0.01 \), CI = 0.001-0.05), DXS443 (Zmax = 14.2 at \(\theta = 0.03 \), CI = 0.004-0.09), DXS365 (Zmax = 24.5 at \(\theta = 0.008 \), CI = 0.001-0.04). Key recombinants placed RS between DXS43 distally and DXS999 proximally. Multipoint linkage analysis gave odds of 344:1 in favour of this location for RS and supported the map Xpter-(DXS207, DXS1053)-DXS43-1 cM-RS-1 cM-DXS999-DXS443-DXS365-DXS1052-Xcen.

(J Med Genet 1996;33:919-922)

Key words: retinoschisis; X chromosome; microsatellites.

Molecular Genetics Laboratory, Addenbrooke’s NHS Trust, Cambridge, UK
N D L George S J Payne R M Bill D E Barton

Department of Ophthalmology, Addenbrooke’s NHS Trust, Cambridge, UK
N D L George A T Moore

Moorfields Eye Hospital, London, UK
A T Moore

Department of Medical Genetics, Box 134, Addenbrooke’s NHS Trust, Cambridge CB2 2QQ, UK
J R W Yates

Department of Pathology, Cambridge University, Cambridge, UK
N D L George J R W Yates

Correspondence to: Dr Yates.
Received 4 March 1996 Revised version accepted for publication 14 June 1996

X linked retinoschisis (RS) (McKusick No 312700) is said to be the commonest cause of juvenile macular degeneration in males. Patients present with squint and nystagmus in infancy or poor vision in later childhood. Sight threatening complications, such as vitreous haemorrhage and retinal detachment, occur in up to 20% of affected boys, while adult patients may experience deteriorating vision in their fourth and fifth decades owing to macular degeneration. The disease is fully penetrant in males with variable expression. Foveal schisis is said to occur in all patients and over 50% have peripheral retinoschisis. These changes may become less specific in older patients.

The biological abnormality underlying RS is unknown but histological and electrophysiological findings suggest a defect in the Müller cell. Obligate carriers are clinically normal with the possible exception of abnormalities shown by complex psychophysical tests of retinal function. Identification of the genetic defect would be helpful in diagnosing carrier status as well as understanding the pathogenesis of RS.

Early genetic linkage studies showed linkage of RS to the Xg blood group on the distal short arm of the X chromosome. Subsequent studies using restriction fragment length polymorphisms (RFLP) localised RS to a 7 cM region flanked by (DXS207, DXS43) distally and DXS274 and DXS41 proximally. Several new microsatellite markers spanning the RS region have recently been identified and RS has been shown to lie between (DXS43, DXS207) distally and DXS365 proximally.

In this study we report linkage analysis in 16 British families using the microsatellite markers DXS207, DXS1053, DXS43, DXS1195, DXS418, DXS999, DXS443, DXS365, and DXS1052.

Patients and methods

FAMILIES

Sixteen families affected by X linked retinoschisis were examined by one ophthalmologist (NDLG). All available family members underwent a full ophthalmic examination including best corrected visual acuity, ocular movements, colour vision (Ishihara and City University plates), slit lamp examination, and ophthalmoscopy with dilated pupils.

The criteria for the diagnosis of X linked retinoschisis were: (1) typical foveal schisis and a reduced b wave on the ERG, occurring in at least one affected male member from each family, (2) X linked pattern of inheritance with affected males in more than one generation and transmission through unaffected females. Males were diagnosed as affected if they had either typical foveal schisis or a history of bilateral visual impairment since childhood associated with macular changes. Obligate carriers were diagnosed on the basis of having an affected father, or having an affected son plus an affected brother or other maternal male relative.

A total of 208 subjects were examined including 60 affected males, 46 obligate carriers, and 44 females of unknown status; 176 patients provided blood or mouthwash samples for DNA extraction.

Typing of microsatellite markers

DNA was extracted using standard methods. The microsatellite markers DXS207, DXS1053, DXS43, DXS999, DXS443, DXS365, and DXS1052 were analysed by polymerase chain reaction (PCR) in all 16 families. Each 10 μl reaction mix contained 100–200 ng of genomic DNA, 5–10 pmol of primer, 0.1 pmol of 32P end labelled primer, 0.25 U of Taq DNA polymerase, and...
Table 1 Results of two point linkage analysis in RS

<table>
<thead>
<tr>
<th>Locus</th>
<th>Lod score Z at recombination fraction 0</th>
<th>Zmax</th>
<th>0max</th>
<th>Confidence interval for δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DXS207</td>
<td>14.6</td>
<td>17.9</td>
<td>0.03</td>
<td>0.007-0.09</td>
</tr>
<tr>
<td>DXS1053</td>
<td>17.3</td>
<td>18.0</td>
<td>0.01</td>
<td>0.001-0.06</td>
</tr>
<tr>
<td>DXS43</td>
<td>10.0</td>
<td>12.9</td>
<td>0.03</td>
<td>0.004-0.09</td>
</tr>
<tr>
<td>DXS418</td>
<td>8.2</td>
<td>8.2</td>
<td>0.00</td>
<td>0.000-0.07</td>
</tr>
<tr>
<td>DXS1195</td>
<td>6.4</td>
<td>6.4</td>
<td>0.00</td>
<td>0.000-0.09</td>
</tr>
<tr>
<td>DXS999</td>
<td>20.6</td>
<td>21.2</td>
<td>0.01</td>
<td>0.001-0.05</td>
</tr>
<tr>
<td>DXS443</td>
<td>12.2</td>
<td>14.2</td>
<td>0.03</td>
<td>0.004-0.09</td>
</tr>
<tr>
<td>DXS365</td>
<td>24.0</td>
<td>24.6</td>
<td>0.00</td>
<td>0.001-0.04</td>
</tr>
</tbody>
</table>

Table 2 Details of individual recombinants in families with RS. Markers showing recombination with the disease are denoted by X; non-recombinant markers by O, and non-informative markers by n. The dashed line indicates regions of probable exclusion of RS

<table>
<thead>
<tr>
<th>Family</th>
<th>Subject</th>
<th>Sex</th>
<th>Status</th>
<th>DXS207</th>
<th>DXS1053</th>
<th>DXS43</th>
<th>DXS1195</th>
<th>DXS418</th>
<th>DXS999</th>
<th>DXS443</th>
<th>DXS365</th>
<th>DXS1052</th>
</tr>
</thead>
<tbody>
<tr>
<td>6228</td>
<td>II.2</td>
<td>M</td>
<td>X------X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>n</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>6165</td>
<td>III.4</td>
<td>M</td>
<td>X--------X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>n</td>
<td>O</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>O</td>
</tr>
<tr>
<td>6259</td>
<td>II.1</td>
<td>F</td>
<td>X--------X</td>
<td>n</td>
<td>n</td>
<td>O</td>
<td>X--------X</td>
<td>X</td>
<td>X</td>
<td>n</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>6228</td>
<td>III.2</td>
<td>M</td>
<td>X--------X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>n</td>
<td>O</td>
<td>n</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>7577</td>
<td>III.3</td>
<td>M</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>n</td>
<td>X------X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>6228</td>
<td>II.5</td>
<td>M</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>n</td>
<td>O</td>
<td>O</td>
<td>X------X</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

A = affected, OC = obligate carrier.

0.25 mmol/l of each dNTP in buffer containing 1.5 mmol/l MgCl₂, 50 mmol/l KCl, 10 mmol/l Tris, and 0.01% gelatin (2 mmol/l MgCl₂ buffer was used in the case of DXS43). The reaction mixes were subjected to 30 cycles at 94°C for one minute, annealing (56°C for DXS999 and DXS43, 57°C for DXS207 and 58°C for DXS443, DXS365, and DXS1052, 63°C for DXS1053) for one minute, and 72°C for one minute. PCR products were separated by electrophoresis on 4% or 6% denaturing polyacrylamide gels and alleles were visualised by autoradiography. The markers DXS1195 and DXS418 were analysed in the key recombinants only.

LINKAGE ANALYSIS
Genetic linkage analysis was performed using the computer program LIPED for two point analysis and the LINKMAP option of the LINKAGE program for multipoint analysis. The frequency of the retinoschisis gene was set at 0.0001. Confidence intervals were taken as the values of the recombination fraction at a lod score one unit below the maximum. For multipoint analyses the fixed map was (DXS207, DXS1053)-0.1 cM-DXS43-2 cM-DXS999-1 cM-DXS443-2 cM-DXS365 taken from published data.

Results
TWO POINT LINKAGE ANALYSIS
Table 1 shows the results of two point analysis, which confirmed close linkage of all markers to RS.

ANALYSIS OF INDIVIDUAL RECOMBINANTS
In pedigree 6228 (fig 1), affected male II.2 was recombinant for DXS207 and DXS1053 having inherited the opposite alleles to his three affected brothers. DXS999 was uninformative and DXS43, DXS443, DXS365, and DXS1052 were non-recombinant. His affected grandson IV.1 has inherited the same recombinant haplotype. These data map DXS43 and RS proximal to DXS207 and DXS1053. In the same pedigree, affected male II.5 was a recombinant for DXS1052, mapping RS distal to this marker.

In pedigree 6229, II.1 was an obligate carrier (having an affected brother and two affected sons) and was recombinant for DXS207 and DXS43. DXS1053, DXS999, and DXS443 were uninformative, but DXS365 was non-recombinant. This recombinant was inherited by her two affected sons, III.1 and III.2, and therefore maps RS proximal to DXS43.

In pedigree 6656, affected male III.2 was recombinant for DXS999, DXS443, DXS365, and DXS1052 having inherited different alleles to his affected brothers. DXS207, DXS1053, and DXS443 were uninformative. This result maps RS distal to DXS999.

Taken together these recombinants identify DXS999 as the proximal and DXS43 as the distal flanking markers to RS. DXS1195 and DXS418 map to the same interval and were typed in the key recombinants (table 2) but were either non-recombinant or uninformative.

MULTIPOINT LINKAGE ANALYSIS
In the LINKMAP analysis the maximum location score was 125 with RS located at a point midway between DXS43 and DXS999. This position was favoured by odds of 344:1 compared to a location between DXS999 and DXS443 and by odds of 104:1 compared to a location between DXS43 and DXS1053.

Discussion
Using the microsatellite markers DXS207, DXS43, DXS1053, DXS999, DXS443, and DXS365 we have confirmed close linkage to RS. A recombinant in pedigree 6229 mapped RS proximal to DXS43. In pedigree 6656 a
Improved genetic mapping of X linked retinoschisis

Pedigree 6228

Pedigree 6656

Pedigree 6229

Figure 1 Pedigrees 1, 2, and 3. Affected males are shaded and obligate carrier females are indicated by a central dot. The order of the markers for each haplotype is shown in the key.

key recombinant mapped RS distal to DXS999. Together these data place RS between DXS43 distally and DXS999 proximally, a genetic distance of 2 cM. Multipoint analysis supported the map Xpter-(DXS207, DXS1053)-DXS43-1 cM-RS-1 cM-DXS999-1 cM-DXS443-2 cM-DXS365-Xcen. We have narrowed the genetic interval containing the RS locus from 5 cM to approximately 2 cM. This corresponds to a physical distance estimated at 2.5 Mb. The data presented represent a significant contribution to the effort to localise and ultimately clone the gene for RS. In addition we have identified highly informative microsatellite markers which can be used for accurate carrier detection.
We are grateful to the families who have cooperated with this study to the Ophthalmologists and Clinical Geneticists who
kindly allowed us access to their patients. In particular we wish
to thank Professor D McLeod, Mr C L Dodd, Dr J Clayson-
Smith (Manchester), Mr R H C Markham (Bristol), Dr D
Wellesley (Bath), Mrs U K Goddard (Hull), Dr G Turner
(Leeds), Mr J F Talbot, Dr C E Blank (Sheffield), Dr H Hughes,
Ms R Evans, Mr J Tolia (Bangor), Dr S Slane (Oxford), Dr M
Jay (London), Dr S Bundy (Birmingham), Mr A Richards
(Reading), and Mr N E Brown (Warwick). NDLSG was sup-
ported by a grant from Guide Dogs for the Blind Association.

1 McKusick VA. Mendelian inheritance in man. 9th ed. Bal-

2 Deutman AF. Sex-linked juvenile retinoschisis. In: Deutman
AF, ed. The hereditary dystrophies of the posterior pole of

3 Kellner U, Brummer S, Foerster MH, Wessing A. X-linked

4 Schepens CL. Congenital retinoschisis. Klio Oczna 1988;
90:127–32.

5 George NDL, Yates JRW, Moore AT. X-linked retinoschisis.

6 Manschot WA. Pathology of hereditary juvenile re-

7 Peachey NS, Fishman GA, Derlacki DJ, Briggell MG. Psy-
choelectrophysiological and electroretinographic findings in X-linked

cases of X-chromosomal retinoschisis. Can J Ophthalmol

9 Arden GB, Gorin MB, Polkinghorne PJ, Jay M, Bird AC.
Detection of the carrier state of X-linked retinoschisis. Am J Ophthalmol

10 Boman H, Hellin P, Kolder HE, Gibbets ER, Fialkow PJ.
Hereditary retinoschisis: linkage studies in a family and
considerations in genetic counselling. Can J Ophthalmol

11 Vainio-Mattila B, Eriksson AW, Forsius H. X-chromosomal
recessive retinoschisis in the region of Port. Acta Oph-

12 Wieacker T, Winkert TF, Dallapiccola B, Bender K, Davies
KE, Rupert HH. Linkage relationships between reti-
inoschisis, Xq, and a cloned DNA sequence from the
distal short arm of the X chromosome. Hum Genet 1983;
64:143–5.

13 Altalot T, Forsius H, Karna J, et al. Linkage relationships
and gene order around the locus for X-linked retinoschisis.

14 Altalot T, Krause TA, de la Chapelle A. Refinement of localisation
of the gene causing X-linked juvenile retinoschisis. Genomics

15 Altalot T, Krause TA, Atrens P, Albenes HM, Eriksson
AW, de la Chapelle A. Genomic mapping of 12 marker loci

U. DNA linkage analysis of X-linked retinoschisis. Hum

detection and genetic counselling in X linked retinoschisis.

18 Sieving PA, Bingham EL, Roth MS, et al. Linkage re-
relationships of X-linked juvenile retinoschisis with Xp22.1

highly polymorphic microsatellite at the DXS207 locus:
confirmation of very close linkage to the retinoschisis

20 Rowe PS, Goulding J, Read A, et al. New markers for
linkage analysis of X-linked hypophosphataemic rickets.

21 Rowe PS, Goulding J, Read A, et al. Refining the genetic map
for the region flanking the X-linked hypophosphataemic

22 Bergen AAB, ten Brink JB, Bleeker-Wagemakers LM, van
Schoorveel MJ. Refinement of the chromosomal position
of the X linked juvenile retinoschisis gene. J Med Genet

23 Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a
laboratory manual. 2nd ed. New York: Cold Spring Harbor

Generation human genetic linkage map. Nature Genet 1994;
7:246–339.

deletion map of human chromosome Xp22. Nature Genet

linkage map of the human genome. Nature 1992;359:
794–801.

27 Browne D, Barker DF, Litt M. Dinucleotide polymorphisms
at the DXS16, DXS443, and DXS451 loci. Hum Mol

28 Van de Vosse E, Booms PFM, Vossen RHA, Wapenaar
MC, Van Ommen GJB, Den Dunnen JT. A CA-repeat
polymorphism near DXS418 (P122). Hum Mol Genet

29 Ott J. Estimation of the recombination fraction in human
pedigrees: efficient computation of the likelihood for

30 Lathrop GM, Lalouel JM, Julier C, Ott J. Multilocus linkage
analysis in humans: detection of linkage and estimation

high resolution linkage map for Xp22.1–22.2 and re-
finement of genetic localisation of the Coffin-Lowry syn-

32 Nelson DL, Ballabio A, Cremers F, Monaco AP, Schles-
singer D. Report of the Sixth International Workshop on
Human X Chromosome Mapping 1995. Cytogenet Cell

33 Altalot T, Francis F, Kere J, Lebrach H, Schlesinger D,
Willard H, A high contig in Xp22.1–p22.2 spanning the
DXS696, XES9, GLRA2, PIGA, GRPR, CALB3, and