Congenital knee dislocation in a 49,XXXXY boy

R H Sijmons, A J van Essen, J D Visser, M Iprenburg, G F Nelck, M L Vos-Bender, B de Jong

Abstract
We report on a 12 year old mentally retarded boy who presented at birth with bilateral knee dislocations, dislocation of the right hip, and general joint laxity. Cytogenetic studies showed a 49,XXXXY karyotype. Hyperlaxity of joints is known to occur in 49,XXXXY patients, but congenital knee dislocation has not been reported. Rarely in 49,XXXXY and 49,XXXX syndromes Larsen-like features may be seen. Patients with congenital joint dislocation or laxity, combined with other malformations, especially if psychomotor development is delayed, should be karyotyped to exclude chromosomal abnormalities. (J Med Genet 1995;32:309-311)

Congenital joint dislocation and joint laxity may result from a wide variety of causes including genetic, non-genetic, or combinations of both. Congenital dislocations of the knee are rare, occurring 40 to 80 times less frequently than congenital dislocation of the hip. We report on a 12 year old boy who presented with congenital dislocation of both knees and the right hip and joint laxity of shoulders, elbows, and thumbs. He was initially misdiagnosed as having Larsen syndrome. Cytogenetic studies showed a 49,XXXXY karyotype.

Case report
This patient was the first child of healthy, non-consanguineous parents (father aged 29 and mother 26 years at the time of birth). The pregnancy was uneventful. The volume of amniotic fluid was normal. At 38 weeks breech presentation was diagnosed. After 42 weeks labour started spontaneously but because of lack of progress a caesarean section was performed. Birth weight was 3200 g (35th centile), height 54 cm (90th to 97th centile), head circumference 53 cm (50th centile), inner canthal distance 3.7 cm (>97th centile) with normal outer canthal and interpupillary distances. A small epicanthic fold was present on the right side. The nasal bridge was broad but not depressed. Protrusion of the incisors was noted. The corners of the mouth were downturned. Total

Figure 1 The patient aged 9 months.
Chromosomal abnormalities with reported congenital knee dislocation and multiple joint dislocations* 1,2,3

<table>
<thead>
<tr>
<th>Congenital knee dislocation</th>
<th>49,XXXXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trisomy 21</td>
<td>9 (mosaicism)</td>
</tr>
<tr>
<td>Partial monosomy 1q25→q22, 6pter→q23, 10pter→q13, 13q22→q24, 17pter→p11.2</td>
<td></td>
</tr>
<tr>
<td>Partial trisomy 6q13→q21, 9pter→q33, 10q24→qter, 12p, 12q24→qter, 13q12→q22</td>
<td></td>
</tr>
<tr>
<td>Partial tetrasomy 9p(mosaicism)</td>
<td></td>
</tr>
<tr>
<td>Ring chromosomes 13, 14, 18</td>
<td></td>
</tr>
<tr>
<td>Combinations</td>
<td>del(16pter→q22) & del(9q34→qter), del(15q26.1→qter)</td>
</tr>
</tbody>
</table>

Chromosomal abnormalities are summarised and the symptoms listed may involve smaller segments than those described here. Those aberrations that feature joint dislocation in more than 10% of cases are shown in bold print. It should be noted that many of the chromosomal abnormalities listed are rare and the calculated frequencies of their phenotypic features may alter significantly if additional cases are published. Abnormalities with fewer than 10 reported cases are printed in italics.

hand length and length of the middle fingers were normal (50th centile) and both fifth fingers were disproportionately short. There was a simian crease on both hands. Both thumbs and elbows could be hyperextended. The shoulders were narrow and showed joint laxity. The feet were in valgus position and showed flat arches. The distance between the first and second toes was enlarged. The fifth toe overlapped the fourth on the right foot. The penis was small (3.5 cm, <3rd centile). Only one small testicle could be palpated in the inguinal canal. The diagnosis of Larsen syndrome was considered unlikely and the differential diagnosis included chromosomal abnormalities.

CYTOGENETIC STUDIES
Fifty-nine metaphases were analysed in cultured peripheral blood lymphocytes using standard G banding techniques. A 49,XXXXY pattern was found in 57 metaphases. A 48, XXXY pattern was found in two metaphases, representing either an artefact or true chromosomal mosaicism. The parents had normal karyotypes (29 metaphases analysed in both). No cell line is available from the patient for research purposes.

Discussion
49,XXXXY is a relatively rare chromosomal abnormality. A birth prevalence of approximately 1 in 85 000 newborn males has been suggested.1 In 1960 Fraccaro et al were the first to report 49,XXXXY. The phenotype has been reported since in over 100 case studies1 and includes low birth weight, slow growth (retarded bone age), craniofacial anomalies (hypertelorism, strabismus, upward slanting palpebral fissures, epicanthal folds, broad, flat nose, mandibular prognathism, malformed ears), hypogonadism/infertility, hypogenitalism, clindactyly of the fifth fingers, simian crease, radioulnar synostosis, coxa-genital valga, pes planus, gap between first and second toes, kyphosis/scoliosis, and mental retardation. Severe impair language development with a remarkable discrepancy between language expression and comprehension is a characteristic finding in 49,XXXXY patients as is shy, withdrawn behaviour. Joint laxity, hypotonia, or both are found in approximately 33% of 49, XXXXY patients2 and hip dislocation and subluxations of the elbows have been known to occur.3 Congenital knee dislocation has not been reported before in 49,XXXXY patients. In a substantial subset of patients with congenital knee dislocation there is a history of prolonged breech presentation, especially in combination with oligohydramnios.4 In our patient the knee dislocation may have resulted from the combination of joint laxity and four weeks of breech presentation. To our knowledge only one other 49,XXXXY patient with a history of breech presentation has been reported and knee dislocations, oligohydramnios, and joint laxity were absent.5 Interestingly, Dryer et al6 reported a 49,XXXXY patient who was also initially misdiagnosed as having Larsen syndrome. Other chromosomal abnormalities have also been reported to present with Larsen-like features.1 Larsen syndrome is genetically heterogeneous and features multiple congenital dislocations (usually including the knees), osseous anomalies, and a characteristic facies. Mental retardation is unusual.4 In the majority of cases careful physical examination of patients with joint laxity and laxity caused by a chromosomal abnormality will not lead to the wrong diagnosis of Larsen syndrome or one of the other hereditary syndromes featuring joint laxity and multiple dislocations. However, as has been discussed above, Larsen-like features may occasionally mislead the physician, especially in newborns.

Chromosomal aberrations featuring congenital knee dislocation and multiple joint dislocation are summarised in the table. General joint laxity is a far more common finding and may be present in patients with aneuploidy for many different chromosomal segments.1,13 Within this group, the relatively frequent aberrations include trisomies of chromosomes 9(mosaicism), 21, and of the segments 7q32→qter, 10p, 10q24→qter, and 20p. Also included are partial monosomies of segments 4pter→p16 and 8q23.3→q24.1, and ring chromosome 22. The combination of congenital joint dislocation or laxity with other malformations should alert the physician to the possibility of a chromosomal abnormality. Karyotyping these patients, including the ones suspected of having Larsen syndrome, especially if psychomotor development is delayed, should be part of their diagnostic programme.

6 Lyon Jones K. Smith's recognisable patterns of human mal-

Figure 2 The patient aged 12 years.
Congenital knee dislocation in a 49,XXXXY boy