virus 1, adenovirus), as well as methods to achieve localised delivery by physical means, are presented in section III. Only one chapter described actual clinical trials, namely the treatment of severe combined immunodeficiency and cerebral tumours using different types of retroviral vectors. While this certainly reflects the state of clinical gene therapy trials when the book went to press, the advances are proceeding at a very fast pace. Very recently (Nature Genetics 1994;6:335-41) Jim Wilson's group has published data on treatment of familial hypercholesterolaemia, and future clinical trials using adenovirus and liposomes for the treatment of cystic fibrosis should become available very soon. This section also describes various pre-clinical applications of HSV-1 vectors in the treatment of brain tumours, the potential use of adenovirus for the treatment of cystic fibrosis and inherited metabolic disorders. The potential of adenovirus and retroviral vectors for the treatment of Duchenne muscular dystrophy are also elegantly reviewed. Two further very original contributions present the current status and future perspectives of gene transfer into the cardiovascular system, and the treatment of diabetes (recombinant adeno virus 1 outlines the future development of truly non-toxic long term expression vectors. Such vectors will have an enormous impact on future developments of non-viral gene therapy. This book will be of much interest to researchers interested in gene transfer and gene therapy independently of their actual fields of interest, molecular geneticists interested in methods and applications of gene transfer, molecular biologists, and clinicians interested in basic aspects of gene therapy. A series of valuable chapters are by in- dustry (pharmacokinetics of DNA based drugs, receptor mediated gene transfer, among others). This is of vital importance since industry is playing a major role in developing these new technologies. Another important aspect of this book is the concentration on techniques that can be eventually applied to in vivo models of disease and thus possible clinical applications. Most of the chapters are short, filled with information, and easy to read. References are available for most chapters are also very up to date; most reviews contain 1993 references. Although all possible methods to achieve gene transfer into cells are not included (for example, adeno-associated virus and Semliki forest virus vectors, yeast (human?) artificial chromosomes) Professor Wolff has done an excellent job in concentrating on those methods which today show the greatest promise for their application to human gene therapy. Nevertheless, many methods that so far have not been used in human gene therapy clinical protocols, will undoubtedly be used in the near future. With respect to the organisation of the book, I felt that a detailed overview explaining and discussing the state of the field and the techniques presented would have been very useful. Also, chapters covering similar topics were placed in different sections of the book, leading to some repetition in the introductory statements and many of the discussions. Most of this, a clinical trial could have been avoided to enhance the flow of the contents. Also, only one chapter provides experimental methods. A discussion on the future of gene therapy of both of these chapters would have been important in pointing the way forwards to the readers and non-experts. In summary, this is a timely and outstanding contribution to a very rapidly advancing field of research and clinical application. It succeeds in identifying and describing 95% of gene transfer vectors and applications in current use, as well as the problems that future generations of gene therapists will have to overcome to make this technique applicable to more diseases. Also, it provides chapters by industrial contributors, which will have a very important role to play in the future of gene therapy. In short, a highly readable and dynamic book, full of useful information and tips on the current status of, and where to look for, the important future developments in one of the most rapidly advancing fields within clinical and experimental medicine.

P R LOWENSTEIN


Those familiar with Metabolic basis of inherited disease of Scrivener, Stanford, and their colleagues will be curious about the niche filled by a much smaller text, particularly as there are other short texts already available on the inherited metabolic diseases. This multi-authored book, written by clinicians, biochemists, and molecular biologists, aims to be a concise source of the background information needed to understand the clinical presentation, diagnosis, and management of this diverse group of disorders. Eighteen European authors have written on subjects in which they are known to have a major interest. The topics cover the major accepted subdivisions within the subject and the editor has focused on ensuring the book has an appeal for students, clinicians, and scientists seeking a quick and reasonably comprehensive review of inherited metabolic diseases. The book, now in its second edition, has been extensively rewritten to include recent molecular genetic advances, especially those which allow further insights into disease pathogenesis as well as genotype-phenotype correlates.

One practical problem for the reader is that a diversity of approach is evident within many of the sections. This is likely to be reflecting the different backgrounds of the authors; however, it creates difficulties when considering the book's likely audience. Some sections, for example those covering the disorders of carbohydrate metabolism, the amino acid disorders as well as the porphyrias, comprehensively cover the clinically important aspects which will appeal to many practising clinicians. Other sections are approached more through the biochemical classification, with a greater stress placed on defining the diseases within the framework of the chosen classification. Sometimes, this emphasis lessens the clinical utility of the topic. Another difficulty arises when considering some of the topics that are included in and excluded from the book. For example, while the inherited disorders of steroid biogenesis have been included, those involving thyroid hormone biosynthesis and a number of other hormone biosynthetic defects are absent.

Despite these aspects, the book is a comprehensive, yet concise account of the vast majority of inherited metabolic diseases. It has been written with the student in mind and each section has an extensive bibliography directing the reader to more comprehensive references. Overall, the compact nature of the book, and the broad multidisciplinary coverage of topics makes this book useful for those studying biochemistry, chemical pathology, and molecular genetics as well as for medical postgraduates seeking a concise overview of a large topic.

D RAVINE


Nora and Fraser come close to achieving their stated objective of producing a book covering what a medical student wants and needs to know in an introductory course. Twenty-eight chapters cover the scientific background for human genetics, introduce the reader to a variety of monogenic and multifactorial disorders, and discuss the various "special topics" in differing levels of detail.

On the whole the chapters are individually well structured and easy to read, with helpful diagrams and clear, appropriate photographs. I was particularly pleased to see several useful, although short, discussions of the ethical issues associated with both genetic screening and management of genetic loci. I am not sure that dermatoglyphics deserved a separate chapter, and as a topic it certainly does not merit a chapter of equal length to the "genetics and cancer" section. The minimalistic referencing is reflected in some of the details being rather out of date; Marfan syndrome is most certainly more common than the 1 in 60 000 frequency quoted, for example.

This book undoubtedly has value as a teaching aid and would supplement the texts for medical students. However, it is recommended for students who are majoring in medical genetics.

J GRAY


Over the last 10 years, our comforting picture of the human genome as a stable repository of pristine information has been replaced by an image of an unsettlingly dynamic entity, the information hostage to its chemical composition and the imperfections of the enzymes which act upon it. The recent revelations of the unprecedented fluidity which underlies the trinucleotide repeat expansion model have spawned a series of books and review articles which strive to describe and explain these phenomena. This book carries the rather general title of "Genome Rearrangement and Stability", the tenor of its contents page and