Syndrome of the month

The Aicardi-Goutières syndrome (familial, early onset encephalopathy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis)

J L Tolmie, Paul Shillito, Rhiannon Hughes-Benzie, J B P Stephenson

Abstract
Aicardi-Goutières syndrome (Mendelian inheritance in man Catalog No *225750) is an autosomal recessive encephalopathy which causes developmental arrest, intracerebral calcification, and white matter disease in the presence of chronic cerebrospinal fluid lymphocytosis, and a raised level of cerebrospinal fluid interferon-alpha (IFN-α). Diagnosis requires the presence of progressive encephalopathy with onset shortly after birth, and characteristic clinical neurological and neuroimaging signs together with chronic CSF lymphocytosis. The syndrome has superficial resemblance to the neurological sequelae of congenital infection, thus a rigorous search for microbiological and serological evidence of embryopathic infections should be carried out in each case.

Jean Aicardi and Françoise Goutières are eminent French paediatric neurologists who described the syndrome bearing their name in 1984.1 Their original report was a detailed account of eight children affected by a very severe, familial encephalopathy diagnosed shortly after birth which was fatal or caused persistent vegetative state from early childhood. The neurological phenotype comprised acquired microcephaly with intracerebral calcification and white matter disease, spasticity, dystonia, visual inattention, and abnormal eye movements. A most striking abnormality was chronic cerebrospinal fluid lymphocytosis in the absence of other evidence of infection by any known embryopathic pathogen.

Although Aicardi and Goutières identified cases with a similar clinical course and intracranial calcification in older neurological publications,2,3 their syndrome is uncommon. Since 1984 we have observed only two cases in our catchment population where there are 30 000 births per year. The total number of published cases is also uncertain because of difficulties with case definition, for example, is cerebrospinal fluid lymphocytosis an absolute requirement for diagnosis? Nevertheless, allowing some latitude in the interpretation of pre-1984 publications and also other reports where cases have been investigated to a variable extent, there are nearly 30 reported cases.1-11 Although Aicardi-Goutières syndrome is rare, its clinical genetic importance is exaggerated by the high chance that its symptoms and signs may be mistaken for the neurological sequelae of a non-genetic congenital infection.

Clinical features and natural history
Typically, the antenatal history is uneventful and birth weight at term is normal. The head circumference (OFC) at birth is usually normal

Duncan Guthrie
Institute of Medical Genetics and Fraser of Allander Unit
(Paediatric Neurology), Yorkhill Hospitals NHS Trust, Glasgow G3 8SJ, UK
J L Tolmie
P Shillito
R Hughes-Benzie
J B P Stephenson
Correspondence to: Dr Tolmie.

Figure 1 Non-dysmorphic, hypotonic infant with the encephalopathy of Aicardi-Goutières syndrome (see fig 3 for cranial CT appearance).
or slightly reduced in comparison with the birth weight centile. Presenting symptoms and neurological signs of encephalopathy are noted in the first days or weeks of life with poor feeding, irritability, and truncal hypotonia coinciding with the onset of poor head growth (fig 1). Limb spasticity and intermittent dystonic posturing are usual but seizures are not prominent and the electroencephalographic record is frequently unremarkable apart from some diffuse slow wave activity. Abnormal eye movements with visual inattention are typically present by the age of 3 months but ophthalmological examination and visual evoked potentials are normal. Rapid progression to a persistent vegetative state is usual. Death occurs in the first year in about 25% of cases. Tube feeding has been used to overcome oral feeding difficulties and an affected infant may thrive, although head growth virtually ceases and the OFC may decline to 7 SD below the mean. In two older affected children, we noted the development of severe chilblains and acrocyanosis of the feet (fig 2). This occurred in their third year and, curiously, the chilblains were not associated with any coolness of the extremities nor any detectable immunological abnormality. Furthermore, the lesions did not respond to vasodilator therapy.

Neuroimaging investigations

When the encephalopathy is first diagnosed, a skull x ray may show numerous small areas of intracranial calcification while cranial ultrasound scan may confirm periventricular calcification with normal ventricles and little or no atrophy. Alternatively, calcification may be absent from these initial images. Progressive periventricular and basal ganglia calcification is the most constant finding but there may also be calcification in the cerebrum and cerebellum. However, the extent of intracerebral calcification does not correlate with the severity of the clinical picture. Serial cranial CT scans show progressive cerebral atrophy with loss of white matter (fig 3). Magnetic resonance studies have confirmed the white matter abnormalities with increased intensity of the T2 weighted signal.

Investigations

To clinch the diagnosis of Aicardi-Goutières syndrome, serial lumbar punctures are required to establish that sterile, chronic cerebrospinal fluid lymphocytosis is present. The cell count varies from 20 to 80 per cubic mm, lymphocytes make up 80% or more of the total, and, in one case, there were decreased subpopulations of activated and avid T cells and a predominance of non-T, non-B, and null lymphocytes. Assay of cerebrospinal fluid IFN-α provides useful additional evidence if the level is significantly above the normal value of less than 2 IU. Overall, these results are compatible with a localised inflammatory process, yet protein and glucose levels are normal in most cases and no infectious agent has ever been identified. Nevertheless, important additional investigations to undertake are microbiological and serological tests for prenatal infection with toxoplasma, rubella, cytomegalovirus, and herpes.
Differential diagnosis of Aicardi-Goutières syndrome (categories 1–3 were derived from Billard et al).}

<table>
<thead>
<tr>
<th>Clinical syndrome</th>
<th>Comment</th>
</tr>
</thead>
</table>
| (1) Cerebral calcification, demyelination, and prominent additional features such as retinal dysplasia | Different autosomal recessive varieties, for example, early onset Cockayne syndrome or encephalopathy with growth hormone deficiency. Necropsy important to identify Aicardi-Goutières syndrome. |}
| (2) Cerebral calcification with CT or MRI evidence of prenatal anoxic-ischaemic lesions | |}
| (3) Cerebral calcification, acquired microcephaly, encephalopathy, and CSF lymphocytosis | |}
| (4) Cerebral calcification and leucodystrophy with or without a high CSF protein level, but normal CSF cell count | |}
| (5) Other cerebral calcification syndromes closely mimicking sequelae of intrauterine infection | |}
| (6) Miscellaneous syndromes causing encephalopathy in infancy or intracranial calcification or both | |}

Simplex virus which should be negative in blood, urine, and other body secretions. Further serological tests for human immunodeficiency virus should also be demonstrably normal. To date, no chromosomal abnormality has been found.

Neuropathological findings have not been presented in recently described cases of Aicardi-Goutières syndrome. However, among reports of infants with similar findings4,12-14 (comprising leuconecephalopathy and cerebral calcifications with or without raised CSF protein levels but no mention of CSF leucocytes), documented brain histological abnormalities include calcifications of the basal ganglia, cerebral and cerebellar hemispheres, reduced white matter with poorly staining myelin and gliosis, and an inflammatory type meningeal reaction.

Differential diagnosis

Patients with neurodegeneration and cerebral calcifications have presented long standing nosological problems and an informative review was written 35 years ago by Melchior et al.4 These authors noted that Fahn's disease was the eponym given to cases with the predominant finding of "idiopathic nonarteriosclerotic calcifications of the brain", following Fahn's description of a 55 year old man with symmetrical calcification of the basal ganglia and rapidly progressive neurological disease. Melchior et al.4 also distinguished from Fahn's disease a familial genetic encephalopathy of infancy, akin to Aicardi-Goutières syndrome, with demyelination and cerebral calcification. On its own, intracerebral calcification is not a particularly good diagnostic handle and an extensive list of nearly 100 causes was supplied in a case report of a child with dysosteossclerosis.15 Fortunately, though, the vast majority of these listed syndromes are easily distinguished if the Aicardi-Goutières syndrome is defined as a severe, progressive encephalopathy diagnosed shortly after birth with calcification in the basal nuclei and chronic excess of white cells in cerebrospinal fluid. The table provides a shorter list of references to groups of disorders which need to be considered in the differential diagnosis of Aicardi-Goutières syndrome.

Aetiology and genetics

Case reports have documented parental consanguinity and the recurrence of the syndrome in sibs of diverse ethnic origins.1,11 Thus, there is general agreement that an autosomal recessive gene causes this condition. Nevertheless, the syndrome's resemblance to neurodegeneration caused by embroyopathic infection is long appreciated.1 Moreover, there is a puzzling rise of cerebrospinal fluid IFN-α,16 a cytokine which has the ability to protect cells against a wide range of DNA and RNA viruses as well as having antitumour and immunomodulatory effects through binding specific receptors on target cells and altering gene expression and post-transcriptional protein expression.16 Raised levels of IFN-α, but not IFN-γ, were found in cerebrospinal fluid or sera or both in seven out of eight patients with Aicardi-Goutières syndrome with negative serology tests.13 The IFN-α levels in cerebrospinal fluid were high at birth and then slowly declined but were still present in two out of three patients tested at the age of 5 years. The reason for persistent production of IFN-α in patients with familial encephalopathy is unknown but it is speculated that there may be an underlying pleiotropic inherited defect which causes leucodystrophy and defective regulation of IFN-α synthesis, or an unknown viral infection associated with an autosomal recessive abnormality of host response.13

Prenatal diagnosis of Aicardi-Goutières syndrome has not been accomplished although consideration may be given to measuring IFN-α in a sample of fetal blood or cerebrospinal fluid. This procedure would be risky and speculative, so it is gratifying to record that Professor Lebon has started collection of DNA samples from suitable families for the purpose of molecular genetic studies.
We thank Professors Aicardi, Goutières, and Lebon and Dr Bryony Fredericks for commenting on clinical and radiological features of our cases and also for不应答IFN-α levels in blood and CSF.

