SRVX, a sex reversing locus in Xp21.2→p22.11

Cytogenetic duplication of the X chromosome in males is a rare event usually characterised by a significant degree of phenotypic abnormality, which can include sex reversal, in the presence of an apparently normal Y chromosome. In this paper the authors report two half sibs with maternally inherited cytogenetic duplications of Xp and sex reversal; the absence of dysmorphic features in mother and children is thought to be because of the relatively small extent of the duplication. Comparison with previous reports allows the putative sex reversing locus (SRVX) to be assigned to a 5→10 megabase fragment between Xp21.2 and Xp22.11 which includes the DMD locus. This regional assignment should help in the isolation of the SRVX gene mutations which may be a cause of sex reversal found in the 90% of sex reversed women with XY gonadal dysgenesis who do not have detectable mutations of the sex determining SRY gene.

DAVID RRAINE

Huntington disease without CAG expansion: phenocopies or errors in assignment?

Huntington’s disease (HD) is associated with an expanded triplet (CAG) repeat within a gene on 4p16.3. Although the paper describing the discovery of the gene was only published in March 1993, several thousand DNA samples have now been tested already in various laboratories around the world. In the majority of cases which were diagnosed clinically as having HD, molecular analysis has confirmed the diagnosis. In a few cases, however, this has not happened, and there can be a variety of reasons for this. Andrew et al report their experience in 1022 clinically affected patients. They found 30 (2.9% of the cohort) who did not have an expanded CAG repeat in the disease range. Ten of the 30 persons with normal sized alleles represented clinical misdiagnosis, six involved a sample mix up, and two arose as clerical errors. The authors explore the possibility of other types of phenocopy for HD. It will be interesting to see how many of the patients in the misdiagnosis group (and possibly also the phenocopy group) turn out to have dentato-rubropallidoluysian atrophy, the latest triplet repeat to be discovered. This report underlines the importance of confirming the diagnosis in patients at a molecular level whenever possible, before offering symptomatic treatment to relatives. The small potential for human error can never be completely excluded.

FRANCES FLINTER

Neurofibromatosis type 1: the cognitive phenotype

Learning difficulties are estimated to occur in 30 to 40% of children with NF1. In this study a group from Johns Hopkins University set out to explore whether the presence of the NF1 gene results in a global cognitive deficit as measured by a lowering of IQ, or in a more specific cognitive deficit or learning disability. In addition, they sought to establish whether learning disabilities could be correlated with brain MRI scan findings. Families were informed about the study via NF centres and organisations. Of those expressing interest, 12 families with the appropriate structure were chosen. Each comprised of one child with NF1, an unaffected sib, and both natural parents. NF children with known intracranial problems were excluded but family members with known learning difficulties or hyperactivity disorders were not, making some of the results difficult to interpret. A history, physical examination, MRI scan, and a battery of psychological tests were carried out on each person. The results were subject to various statistical analyses. Full scale IQs ranged from 70 to 130 among children with NF1 and from 99 to 139 among unaffected sibs. Scores of NF1 parents ranged from 85 to 114 compared to 80 to 134 in unaffected parents. Children with NF1 showed significant deficits in language and reading compared to sibs. Compared to other children they had impaired visuospatial abilities and neuromotor skills. Further studies of a variety of functions are required before a complete understanding of NF1 children can be achieved.

JILL CLAYTON-SMITH

Mutation of a mutL homolog in hereditary colon cancer

A cell cycle regulator potentially involved in genesis of many tumor types

The proposition that mutations in genes with important functions in the control of normal cellular growth and replication play a key role in the development of cancer is clear. In both these reports, a DNA mismatch repair gene (hMSH2), recently mapped to chromosome 2p21, is required for the hereditary non-polyposis colorectal cancer (HNPCC) and microsatellite instability in tumour tissue; this gene’s homology to a bacterial equivalent prompted this group to screen a commercial human DNA library for expressed sequences with homology to other bacterial or yeast mismatch repair loci. One of the homologous sequences mapped precisely to 3p21, a site with known linkage to HNPCC. This group then went on to sequence the gene at this site and use RT-PCR to identify four different heterozygous germ-line mutations. It is not known whether a tumour cell line no wild type product was found, indicating that the gene designated hMLH1 is a classic tumour suppressor. The identification of specific mutations in hMLH1 will be of immediate benefit to HNPCC families. Mutations in this gene together with its chromosome 2 counterpart hMSH2 may also account for the majority of predisposing mutations in HNPCC which constitutes 4 to 13% of all colon cancer. Investigations of two further mismatch repair genes pulled out by the same screening technique will be awaited with interest. The second group also began...