Two sibs who are double heterozygotes for achondroplasia and pseudoachondroplastic dysplasia

C G Woods, J G Rogers, V Mayne

Abstract
We report a family in which two sibs have both achondroplasia and pseudoachondroplastic dysplasia. The mother has achondroplasia and the father has pseudoachondroplastic dysplasia, which he had inherited from his father. Both children appeared typical of achondroplasia at birth. By 14 years they had developed a fixed lumbar kyphosis with gibbus and had additional x-ray changes unusual for just achondroplasia and suggestive of pseudoachondroplastic dysplasia. Subsequently both children have shown characteristic features of both conditions and have grown less well than expected for achondroplasia. Radiographs show the striking synergistic effects of the two conditions. MRI in both sibs confirmed brain stem compression at the foramen magnum. This may be an important complication and should be actively sought in any double heterozygote.

Achondroplasia and pseudoachondroplastic dysplasia are separate and specific autosomal dominant causes of disproportional dwarfism. We describe the double heterozygote effects of these conditions in two sibs born of an achondroplastic mother and a father with pseudoachondroplastic dysplasia.

Figure 1 Family pedigree showing birth order and those with skeletal dysplasias.

heterozygote, and 1 in 4 chance of achondroplasia alone and 1 in 4 chance of pseudoachondroplastic dysplasia alone.

The couple have three children, two females, IV.1 and IV.2, and a male, IV.3. The children IV.2 and IV.3 are shown in fig 2.

CASE 1
The first child, IV.1, was born after an uneventful pregnancy and delivered by caesarian section. Achondroplasia was apparent at birth. She was very short (40 cm, < 3rd centile), with mesomelic limb shortening, a large head (90th centile), spatulate hands with inability to approximate the fingers in extension, hypotonia, and marked hyperextensibility of the wrists and ankles. She had typical radiographic findings of achondroplasia in the first year of life (not shown), lucent zones in the proximal femora, narrowing of the interpedicular distances in the lower lumbar spine, and short lumbar pedicles. The iliac wings were short and square and the acetabular roof was horizontal with narrowing of the greater sciatic notch. At 1 year, kyphosis of the thoracolumbar spine on sitting was noted and was not totally corrected when lying. Spinal bracing with a body jacket
ventriculoperitoneal shunt is visible of achondroplasia 18 aged 2 Figure aged III.2 kyphosis. for six months failed progressive anterior wedging of vertebrae particularly at the apex of the kyphosis, typical of pseudoachondroplastic dysplasia (fig 3B, C, D, and E). The gibbus became fixed by 1½ years. By 5 years severe radiographic changes characteristic of pseudoachondroplastic dysplasia were apparent as well as those expected for achondroplasia. Wedging, anterior tongue-like protrusions, and kyphoscoliosis were present as was delayed capital femoral epiphysis ossification (fig 3A). The marked epiphyseal changes of pseudoachondroplastic dysplasia and combined shortening of long bones seen in both conditions are shown in fig 3 F–K.

Her development and health have been normal apart from the acquisition of gross motor skills. She had minor dilatation of the cerebral ventricles suspected clinically and confirmed by ultrasonography which did not progress after 1 year of age. From the age of 2 years her body shape, gait, and posture has become typical of pseudoachondroplastic dysplasia. Her growth has been slower than expected in achondroplasia.1 From the age of 3 years she had instability of the knees and ankles, a waddling gait, slight bowing of the knees, and found it difficult to walk. Her wrists are also lax. Recently her exercise tolerance has diminished although she has no respiratory or cardiac symptoms nor discomfort on walking. Brain stem or spinal cord compression was suspected and an MRI scan performed (fig 3 L, M, N). This confirmed compression of the brain stem at the level of the foramen magnum with posterior flattening, but no obvious brain stem damage. A narrowed lower spinal canal beneath the corda aquina was also seen. A decompression of the foramen magnum and posterior cranial fossa was performed. The bone in the region of the foramen magnum was deeply shelved and difficult to remove. Postoperatively her gait is steadier, but she still falls and is clearly weak in her lower limbs.

CASE 2
The second child, IV.2, was born after an uneventful pregnancy and delivered by caesarean section. A clinical diagnosis of achondroplasia was made at birth. Her head circumference at birth was 28 cm (on the 25th centile for
Two sibs who are double heterozygotes for achondroplasia and pseudoachondroplastic dysplasia.

Figure 3 X-rays and MRI scans of female III.1 at 5 years unless otherwise stated. (A) AP pelvis, (B) AP spine, (C) lateral spine at 21 months, (D) lateral spine at 1 year, (E) lateral spine at 9 months, (F) right femur at 5 years, (G) AP left forearm, (H) left lower leg, (I) left foot, (J) left hand, (K) AP left shoulder, (L) T1 weighted MRI of brain showing brain stem compression at the foramen magnum, (M) T1 weighted MRI of spinal cord showing gibbus and mild lumbar stenosis, (N) T2 weighted MRI of brain showing stem compression at the foramen magnum but with no features of brain stem damage.

Figure 4 X-rays of female III.2. (A) Lateral spine at 17 months showing kyphosis and anterior wedging of lumbar vertebrae, (B) lateral spine at 3 years showing kyphosis, lumbar gibbus, and more marked anterior wedging of lumbar vertebrae, (C) AP spine and pelvis at 3 years showing lumbar platyspondyly and interpeduncular narrowing of lumbar vertebrae.
achondroplasia3), by 3 months it was on the 50th centile, and by 18 months it was on the 75th centile. Thereafter growth followed the 75th centile. Ultrasound scans of her head during this period showed mild dilatation of the lateral and third ventricles. By 1 year she had developed a fixed lumbar kyphosis. Radiographs taken at 17 months and 3 years of age confirmed that she too had pseudoachondroplastic dysplasia as well as achondroplasia (fig 4). As with her sister, motor milestones were delayed, but otherwise developmental progress has been normal. She has not had any ENT problems, joint stiffness, swelling, or pain. She has grown less well than expected for achondroplasia after the first year of life. On examination at 3½ years she had typical findings of achondroplasia, a fixed lumbar gibbus, a waddling gait, and marked laxity of her wrists, knees, and ankles. Her strength and reflexes

Figure 5 X rays of male III.3. (A) AP spine at 22 months, (B) lateral spine at 15 months, (C) CT scan of brain at 11 months, (D) left hand at 22 months, (E) AP pelvis at 22 months.
Two sibs who are double heterozygotes for achondroplasia and pseudoachondroplastic dysplasia

were normal but tone was reduced. An MRI scan of the neuraxis showed stenosis of the craniocervical junction with indentation of structures by the posterior margin of the fora-
men magnum. She developed signs of progressive urinary retention. She had the same opera-
tion as her older sib and with identical findings of a deeply shelved foramen magnum. Posto-
peratively the urinary retention has resolved and her mother feels her gait has improved.

She is shown with her brother, IV.3, who has achondroplasia in fig 2.

CASE 3

The third child was a boy, IV.3. At birth he had achondroplasia with characteristic changes con-
formed radiologically. Rapid head growth was confirmed by 9 months. Ultrasound scanning at
6 months showed moderate dilatation of the lateral ventricles and to a lesser extent the third
ventricle. A CT scan confirmed hydrocephalus and a ventriculoperitoneal shunt was inserted
(fig 5C). Lateral spine x rays taken at 15 and 22 months (fig 5A and B) were clearly different
from those of his two sisters, showing only the kyphosis and interpeduncular narrowing of
achondroplasia. He has no clinical or other additional radiological findings other than those
expected for achondroplasia (fig 5 D and E).

Discussion

At birth the two females, IV.1 and IV.2, appeared to have achondroplasia. The develop-
ment of a fixed lumbar gibbus, unusual spinal changes, increasing joint laxity of the hands,
and characteristic gait and hand posture made the presence of the pseudoachondroplastic dys-
plasia apparent. The two females now have typical clinical and radiological findings of
achondroplasia, and pseudoachondroplastic dysplasia, whereas the brother, IV.3, has only the
findings of achondroplasia.

With the occurrence of both conditions in our patients, we note that the following
features suggest synergy of the primary skeletal defects. The development of anterior tongues
in vertebral bodies in pseudoachondroplastic dysplasia is unusual before the age of 2 years,
but was seen earlier in these two females. Both
children are unusually short and growing poorly. Both children have required posterior
spinal cord surgery for cord compression at the level of the foramen magnum. This is a known
complication of achondroplasia, but its occur-
dence in both III.1 and III.2 may indicate that it is a common complication of achondroplasia/ pseudoachondroplastic dys-
plasia double heterozygotes. In view of this expe-
rience we feel that an MRI scan should be
performed at the earliest opportunity as the
cord damage appears to be progressive. If com-
pression is confirmed early, surgery may lead to
a reduction in neurological deficit.

A previously described child with achen-
droplasia and pseudoachondroplastic dysplasia
had similar clinical and x ray findings to those
described here. In contrast to our cases who
had foramen magnum compression, only a nar-
rrowed lumbar spinal canal was found on MRI
imaging.

The interaction of the two conditions in these
children seems relatively mild in comparison
with homozygous achondroplasia which causes
a more severe phenotype.

The appearance of the x rays of the spine and
the demonstrable narrowing of the canal on
MRI scan raises questions about the future
problems and their management for these sibs.

We gratefully acknowledge the expert assistance of Dr Ethna
PheLAN and Professor David Danks.

1 Horton WA. Standard growth curves for achondroplasia. J
2 Dawson DV. Confidence bands for the growth of head cir-
cumference in achondroplastic children during the first year
3 Spranger JW, Langer LO, Wiedemann HR. Bone dysplasias:
an atlas of constitutional disorders of skeletal development.
5 Hecht JT. Long term neurological sequelae in achondroplasia.
6 Langer LO, Schaefer GB, Wadsworth DT. Patient with
double heterozygosity for achondroplasia and pseudo-
achondroplasia with survival beyond infancy. Am J Med