Deletion mapping of the DXS986, DXS995, and DXS1002 loci defines their order within Xq21

Paula A Clark, Tracy Lester, Laurent Villard, Michel Fontes, Christine Kinnon

Abstract

The three microsatellite repeat loci, DXS986, DXS995, and DXS1002, have been mapped to Xq13.2–21.1. We report here their relative order and their localisation within Xq21. These loci will be useful for the genetic mapping of disease loci in this region, in particular X linked deafness, as DXS995 lies in the region critical for this disorder.

Molecular Immunology Unit,
Institute of Child Health,
30 Guilford Street,
London WC1N 1EH,
UK
P A Clark
T Lester
C Kinnon

INSERM U242, BP24
13351, Marseille Cedex 5, France
L Villard
M Fontes

Correspondence to Dr Kinnon.

Received 17 September 1993
Revised version accepted for publication 28 October 1993

A number of genetic disorders have been mapped to the Xq13–21 region, including X linked severe combined immunodeficiency (SCIDX1),1 X linked deafness,2 and a range of mental retardation syndromes,3 by genetic linkage studies. Such studies are dependent on the use of well mapped, highly polymorphic markers such as microsatellite repeat loci. DXS986, DXS995, and DXS1002 are loci detectable by microsatellite repeat markers with polymorphism information content (PIC) values of 0.76, 0.61, and 0.72, respectively.4 These have been mapped crudely to Xq13.2–21.1 by genetic linkage analysis of CEPH families.5

To map these markers with respect to one another and to refine their positions, we have used genomic DNA from three patients with interstitial deletions on the proximal long arm of the X chromosome. Patient NP has a deletion which extends from the DXS447 to DXS73 loci (Xq21.1–21.33) and results in choroioridema, mental retardation, and cleft lip and palate but no immunodeficiency.6 The proximal breakpoint of this deletion defines the distal end of the SCIDX1 critical region.7 By contrast, patient MBU is deleted from DXS233 to pF1 (Xq21.1–22) and has only choroioridema, whereas patient D20 is deleted from DXS986 to DXS73 (Xq21.1–21.33) and has chorioridema, mental retardation, and deafness.8

Genomic DNA was prepared from EDTA blood sample8 (normal male and patient D20) and EBV transformed B cell lines9 (patients NP and MBU). Oligonucleotide primers specific for the DXS441 locus8 and DXS986 (AFM11608a 5'-CCTAAGTGTGCTATCATC-CCCA-3' and AFM11608b 5'-AGCTCAATGC-CAAGTGGTCGTA-3') and DXS995 (AFM20756a 5'-AAAGGGCTGCTGATGTTAT-3' and AFM20756b 5'-AATGGCCTGCCCTCCCCAATA- TGT-3') and DXS1002 (AFM249vh5a 5'- CTGCTACCTTTTAGTCTCTC-3' and AFM249vh5b 5'-TCCATCTTTGCTGGC- AA-3') were prepared and used for PCR amplification. A reaction volume of 25 μl was used with 100 ng of genomic DNA and 10 pmol of each primer in 10 mmol/l Tris-HCl, pH 8.3, 50 mmol/l KCl, 1.5 mmol/l MgCl2, 200 μmol/l dATP, dGTP, dTTP, and dCTP, and 1 unit of Taq polymerase (Bioline). Thermal cycling started with denaturation at 94°C for three minutes, followed by 30 cycles at 55°C (DXS441 and DXS1002) or 60°C (DXS986 and DXS995) for one minute/72°C for 30 seconds/94°C for 30 seconds, and finally a 10 minute extension step at 72°C. DNA from a normal male and the amplification of DXS441 were used as positive controls; 10 μl of the reaction was analysed on a 2% agarose gel.

The breakpoints in the deletion patient DNA divide the Xq21.1–21.33 region into four intervals as shown in the figure. The results of PCR analysis of patient DNA samples using the primers specific for the DXS441, DXS986, DXS995, and DXS1002 loci are also shown in the figure. Considering the results obtained for DXS986, the primers amplify a product in MBU and D20 but not NP DNA; therefore this locus must lie in the interval between the proximal breakpoints of NP and D20. Similarly, based on the results obtained for DXS995 and DXS1002 with the same DNA samples, these loci can be assigned to two of the other three intervals as shown in the figure. Thus, DXS986 must lie between PGK1 and DXS232, DXS995 between DXS26 and DXS233, and DXS1002 between DXS121 and DXS96. Since all these loci are within the NP deletion they must all be distal to Xq13.3. This is confirmed by the fact that none of these loci was present within YAC clones forming a contig in the Xq13.3 region (data not shown10,11). The order of loci in the Xq13.2–21.33 region can therefore be deduced as: cen-PGK1-DXS986-DXS441-DXS72-DXS26-DXS995-(DXS232-DXS121)-DXS1002, (DXS233-DXYS1-DX3-DX573)-DXS96-pF1-tel.

The SCIDX1 gene has recently been identified as the interleukin-2 receptor gamma chain gene (IL2RG) which maps to Xql3.1,12,13 Our data confirm that all three of these loci are distal to the SCIDX1 locus. As these microsatellite repeat markers have a high PIC value, their more precise localisation will be useful for linkage mapping, carrier determination, and prenatal diagnosis of other disorders which map to this region. In particular, DXS995 may be useful with respect to X linked deafness as it
lies in the region critical for this disorder, between DXS26 and DXS121, as defined by deletion mapping. Following extensive mapping studies in the Xq12–21.3 region, including this work, microsatellite loci have now been located at approximately 2 to 3 Mb intervals throughout this region which will aid further gene mapping studies.

We would like to thank Professor J Weissbach for communicating the sequences of the microsatellite primers before publication, Dr M Binner for providing DNA from patient D20, and the Medical Research Council (UK) and the Child Health Research Appeal Trust of the Institute of Child Health for their generous support.

5 Puck JM, Bailey LC, Conley ME. Update on linkage of X-linked severe combined immunodeficiency (SCIDXI1) to loci in Xq13. Cytogenet Cell Genet 1992;58:2082.
7 Nicolaides NC, Stoeckert CJ. A simple, efficient method for the separate isolation of RNA and DNA from the same cells. BioTechniques 1990;8:154–6.