Duplication of 16q22→qter confirmed by fluorescence in situ hybridisation and molecular analysis

R S Houlston, R M Renshaw, R S James, R Ironton, I K Temple

Abstract
We report a female infant with congenital dislocation of the knee and dysmorphic features including a prominent forehead, midface hypoplasia, and micrognathia. Fluorescence in situ hybridisation and PCR amplification of microsatellite repeats were used to show that she had a de novo unbalanced translocation resulting in partial trisomy for 16q and partial monosomy for 15q (46,XX,-15, tder(15)t(15;16)(q26.1;q22). The consequences of partial aneuploidy of 16q are discussed.

(J Med Genet 1994;31:884-887)

Trisomy 16 is the most common autosomal trisomy among spontaneous abortuses.12 While complete trisomy 16 is non-viable there are reports of liveborn infants with duplication of 16q. The majority of cases have involved virtually the entire long arm of chromosome 16 and have been associated with dysmorphic features and limited postnatal survival.3-10

We report an infant with a de novo duplication of 16q22→qter and deletion of 15q26.1→qter and compare the clinical features with other cases of 16q aneuploidy.

Case report
The proband, a female, was born at 38 weeks to non-consanguineous, healthy, Pakistani parents following a pregnancy complicated by intrauterine growth retardation. Birth weight was 2100g (<3rd centile), length 49 cm (between the 25th and 50th centile), and head circumference 30.4 cm (<3rd centile). The Apgar score was 7 at one and 9 at five minutes respectively.

The mother was 24 and the father 25 years old. There was no family history of congenital malformations. There was a healthy female sibling; however, the mother had previously had two late miscarriages at 5 and 7 months. In both cases the fetuses had been male and no abnormalities were found at necropsy.

Dislocation of the left knee and hip and stiffness of the elbow joints were immediately detected at birth. In addition the infant was noted to have dysmorphic features including a high forehead, small, narrow palpebral fissures with a slight antimongoloid slant, mild midface hypoplasia, and micrognathia. Unfortunately permission was not obtained to publish clinical photographs. Examination of the oral cavity showed a high arched palate and a sublingual frenulum. The fifth digits of the hands were small and there were single palmar creases. In the coccygeal area a large, blind ending sinus was noted and anal stenosis was found. Cardiovascular examination was normal and there were no urogenital or clinically detectable abdominal abnormalities.

Intermittent airway obstruction developed in the first few days of life. This was the result of choanal narrowing. Early indications are that motor development is delayed.

Chromosome analysis showed a female karyotype with additional material at the tip of the long arm of one chromosome 15 (fig 1).

Parental chromosomes were normal. Fluorescence in situ hybridisation (FISH) was performed using a modification of the method of Pinkel et al11 with commercially available chromosome 15 and 16 libraries (Cambio, Cambridge, UK) (fig 2). FISH with the chromosome 15 library showed one chromosome 15 consistently to have a region of signal free material at the end of the long arm (fig 2A). There was no evidence of translocated chromosome 15 material elsewhere in the karyotype. Re-evaluation of the G banded chromosomes suggested distal 16 long arm as a possible origin of the extra material, and therefore FISH was performed with a chromosome 16 library. This showed two normal chromosomes 16 and a region of chromosome 16 positive material at the end of the long arm of one D group chromosome (fig 2B).
cytogenetic and FISH results therefore show that the infant had an unbalanced de novo translocation between the long arms of chromosomes 15 and 16, resulting in a duplication of the distal long arm of chromosome 16 (16q22→qter) and concomitant deletion of the most distal segment of the long arm of chromosome 15 (15q26.1→qter).

Molecular analysis of the long arm of chromosome 16 was by PCR amplification of DNA microsatellite repeats. The primer sequences used were Mfd49 (D15S87, mapping to 15q26→qter), 16AC1.15 (D16S305, mapping to 16q24.2→q24.3), AFM031x (D16S402, distal to 16q23.1), and AFM196xg1 (D16S413, distal to 16q23.1). PCR conditions were those described by Hudson et al. 4 Results were visualised using a 6% denaturing polyacrylamide gel followed by autoradiography. Table 1 shows the results of PCR amplification of DNA microsatellite repeats in the proband and her parents. Fig 3 shows PCR amplification of DNA microsatellite repeat sequences from the proband and her parents using the primers AFM196xg1 at D16S413 and Mfd49 at D15S87. The results indicate that the proband appears to have inherited one paternal allele and two copies of one of the maternal alleles at the loci D16S305 and D16S413, based on the difference in band intensities. The results at D16S402 are consistent with a maternal duplication, but are not informative for the parental origin. However, the absence of a maternal contribution at D15S87 indicates that this structural chromosome abnormality is of maternal origin as well as confirming the deletion of the distal long arm of chromosome 15 suspected on cytogenetic grounds.

Discussion
To our knowledge only 21 cases of infants with duplications involving 16q have been described previously. 3–9 Of the reports which specify the trisomic region six cases have involved complete duplication of the long arm (16p11→16qter), 9–12 five cases of duplication of the long arm except for the proximal heterochromatic region (q13→qter), 13–16 three cases involving q11→ter, 16–18 and four cases with a duplication of q22→ter. 19–21 In all previous cases one of the parents has carried a balanced translocation.

A number of other chromosomes have been involved with 16 in the translocation including 9p, 10 11p, 17 11q, 13 13p, 10 20p, 12 21, 22p, 14 22q, 4 and 15. 19 While the phenotypic effects of partial trisomy 16q may be influenced by secondary chromosome rearrangements resulting from concurrent monosomies some trends do emerge. Table 2 summarises the most frequent clinical findings in these patients divided into groups according to the length of the duplicated segment of 16q. As might be expected, infants with the largest duplication have died shortly after birth. This reflects in part the severe internal malformations present when the long arm duplication of chromosome 16 is completely visible. These include CNS malformations such as porencephaly, congenital heart disease, and intestinal malformations including malrotation and shortened small bowel. It is of interest that anorectal defects have been described in each of these groups. As shown in table 2 there are no striking differences in the facial features between the groups: prominent forehead, midface hypoplasia, and small palpebral fissures with antimongoloid slant. From the classification in table 2, we suggest that duplication of 16q22→qter is a critical region for the facial features in partial trisomy 16q syndrome.

This patient also had a small deletion of chromosome 15 (q26.1→pter). There is little precedent for understanding the role this played in her phenotype. Roback et al. 25 reported a case

Table 1 Results of PCR amplification of DNA microsatellite repeats at 16AC1.15 (D16S305), AFM031x (D16S402), AFM196xg1 (D16S413), and Mfd49 (D15S87) in the proband and parents

<table>
<thead>
<tr>
<th></th>
<th>D16S305</th>
<th>D16S402</th>
<th>D16S413</th>
<th>D15S87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proband</td>
<td>2,3,3</td>
<td>1,3,3</td>
<td>1,2,2</td>
<td>3,–</td>
</tr>
<tr>
<td>Mother</td>
<td>1,3</td>
<td>2,3</td>
<td>1,2</td>
<td>2,4</td>
</tr>
<tr>
<td>Father</td>
<td>2,2</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
</tr>
</tbody>
</table>
of 15q26.1−qter and reviewed seven published cases. While most of these cases had some features common to the case we report (intrauterine growth retardation, microcephaly, micrognathia, high arched palate, renal anomalies, and failure to thrive), facial features did not include midface hypoplasia or small palpebral fissures with an antimongoloid slant. Furthermore, joint dislocation was not a feature.

The case reported by Nyhan et al. is karyotypically very similar to ours with a duplication of 16q22−qter and deletion of chromosome 15q26.1−qter. Multiple congenital joint contractures of the hands, wrists, ankles, and feet were a presenting feature of their case. Joint contractures have also been present in a number of other cases reported suggesting a role for genes in this region in the development of distal arthrogryposis. Although joint contractures were not present in our case there was dislocation of more than one joint. Previous cases with congenital dislocation have involved only the hip joints but in our case the knee was also affected. Although our patient had no abnormalities of the distal digits we note some similarity with Larsen syndrome (McKusick No 15025 and 24560), characterised by midface hypoplasia with depressed nasal bridge and prominent forehead, and joint dislocations especially of the knees. This may suggest a possible candidate region for the localisation of the abnormal gene responsible for this condition which can be both recessively and dominantly inherited. Alternative, Larsen-like features may have heterogeneous causes. Piequin et al. have previously reported Larsen syndrome in association with two unrelated patients with similar but distinct unbalanced translocations resulting in partial trisomy for 1q and partial monosomy for 6p.

Table 2 Comparison of cases of trisomy 16q with virtually complete or partial duplication of 16q

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sex M/F</th>
<th>Age of death/last observation</th>
<th>Low birth weight</th>
<th>Genotype</th>
<th>Partial</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><6mth (<1y)</td>
<td>>6mth (<2y)</td>
<td><2mth (<1yr)</td>
<td>22mth (<2yr)</td>
<td>q21−qter</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td><6mth (<1y)</td>
<td>>6mth (<2y)</td>
<td><2mth (<1yr)</td>
<td>22mth (<2yr)</td>
<td>q21−qter</td>
</tr>
<tr>
<td>Failure to thrive</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hypotonia</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sparse subcutaneous fat</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Headneck</td>
<td></td>
<td><6mth (<1y)</td>
<td>>6mth (<2y)</td>
<td><2mth (<1yr)</td>
<td>22mth (<2yr)</td>
<td>q21−qter</td>
</tr>
<tr>
<td>Abnormal skull shape</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Antimongoloid slant</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Broad/depressed nasal bridge</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>High arched palate</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Low set/eyebrows</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Micrognathia</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sublingual frenulum</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Small palpable fissures</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Thin vermilion borders</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Thin upper lip</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Extremities</td>
<td></td>
<td><6mth (<1y)</td>
<td>>6mth (<2y)</td>
<td><2mth (<1yr)</td>
<td>22mth (<2yr)</td>
<td>q21−qter</td>
</tr>
<tr>
<td>Congenital dislocation</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Club feet</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flexion of fingers+/other joint contractures</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Rocker bottom heels</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sacral dimple/coccygeal sinus</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Small fifth finger/clinodactyly</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Thorax/abdomen</td>
<td></td>
<td><6mth (<1y)</td>
<td>>6mth (<2y)</td>
<td><2mth (<1yr)</td>
<td>22mth (<2yr)</td>
<td>q21−qter</td>
</tr>
<tr>
<td>Anorectal anomalies</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>CHD</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undescended testis</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal anomalies</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choanal atresia</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHD = congenital defect. *Alive.
It is clear that further cases of partial trisomy 16q will help to define the karyotype-phenotype relationship and ultimately the genes of importance in this region.

The work of R S James is supported by the Wellcome Trust.

3.link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
4. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
5. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
6. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
7. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
8. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
9. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
10. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
11. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
12. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
13. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
14. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
15. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
16. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
17. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
18. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
19. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
20. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
21. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
22. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
23. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
24. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
25. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
26. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
27. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
28. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
29. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
30. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
31. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
32. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
33. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
34. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
35. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
36. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
37. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
38. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
39. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
40. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
41. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
42. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
43. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
44. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
45. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
46. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
47. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
48. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
49. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
50. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
51. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
52. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
53. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
54. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
55. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
56. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
57. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
58. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
59. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
60. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
61. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
62. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
63. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
64. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
65. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
66. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
67. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
68. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
69. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
70. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
71. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
72. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
73. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
74. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
75. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
76. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
77. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
78. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
79. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
80. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
81. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
82. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
83. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
84. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
85. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
86. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
87. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
88. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
89. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
90. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
91. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
92. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
93. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
94. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
95. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
96. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
97. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
98. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
99. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis
100. link 16q22–qter confirmed by fluorescence in situ hybridisation and molecular analysis