Dyskeratosis congenita: three additional families show linkage to a locus in Xq28

Reynir Arngrimsson, Inderjeet Dokal, Lucio Luzzatto, J Michael Connor

Abstract

Dyskeratosis congenita (DC) is a rare inherited disorder with most families being of the X linked recessive type. We describe three families which show linkage to the marker DXS52 on Xq28. The combined maximum lod score was 2.00 at zero recombination. This is further evidence that the X linked DC gene is located at Xq28 and brings the reported maximum lod score for DC and DXS52 to 5.33 at zero recombination fraction, with a supporting recombination fraction interval of 0.00–0.10.

(J Med Genet 1993;30:618–19)

Dyskeratosis congenita is a rare inherited disorder, characterised by reticulate skin hyperpigmentation, nail dystrophy, lacrimal duct obstruction, and leucoplakia of the mucous membranes. More serious features are bone marrow hypofunction, pancytopenia, and a predisposition to malignancy.

Manifestation is usually in childhood with serious complications starting in mid teens with a mean age of death at 23.6 years (range 8 to 50 years). Over 100 cases, mostly males (M/F ratio 8:1), have now been reported. About half of these are sporadic and half familial.

X linked recessive inheritance is supported by pedigree pattern in several large families but reports of five affected females in one family with a milder and less typical phenotype and male to male transmission suggest genetic heterogeneity.

Linkage analysis in one large pedigree using multiple X chromosomal DNA polymorphisms assigned the locus to Xq28. This paper reports three further families which show linkage to this same region of the X chromosome.

Subjects and methods

PATIENTS (FIG 1)

Family 1 has been described in detail by Dokal et al. The proband first presented with symptoms of DC at the age of 29 years. His younger brother was diagnosed when he was 26 years old, while being assessed as a potential bone marrow donor.

Patient 3 is a nephew of patients 1 and 2. He was investigated at the age of 12 years and the diagnosis of DC was made. An older half sister of the proband had two sons, who showed no signs of DC on clinical examination and laboratory investigation. Their phenotype was assigned as normal.

Family 2 is a South African family and has been described in detail by Jacobs et al. Three boys and their maternal grandfather were diagnosed as having DC. The grandfather and two of the affected boys were dead, leaving one affected boy, his mother, and two normal brothers available for this linkage study.

In family 3 the proband, of British origin, was diagnosed as having DC. His uncle had died earlier of pneumonia and was noted to have nail dystrophy. The proband, his normal brother, and mother, who is an obligate carrier, were available for linkage analysis.

DNA STUDIES

DNA was extracted from leucocytes using standard methods and 5 to 10 μg of DNA were digested overnight using TaqI enzyme (NBL) under conditions defined by the manufacturer. Restriction fragments were separated in 0.8% agarose gels and transferred by Southern blotting to Hybond-N (Amersham). The probe used was DXS52 (St14.1), which is multiallelic with a PIC value of 0.77, and is a reference marker for Xq28. The probe

Pedigrees of the three dyskeratosis congenita families studied. DXS52 genotypes are indicated.
was labelled with 32P either by nick translation 11 or by oligonucleotide labelling. 12
Hybridisation was performed overnight at 42°C in hybridisation buffer as follows: 50% formamide, 1 \times Denhardt’s, 5 \times SSC, 20mmol/l NaH$_2$PO$_4$, pH 6.8, 0.1mg/ml heat
denatured salmon sperm DNA, 0.02mg/ml poly(A), and 10% dextran sulphate. Non-
specifically bound probe was removed by washing in 1 \times SSC, 0.1% sodium dodecyl sulphate (SDS) followed by 0.5 \times SSC, 0.1% SDS, both
at room temperature, and finally one or two washes in 0.1 \times SSC, 0.1% SDS at 65°C. Bands were visualised by autoradiography for
one to seven days at -80°C using intensifying screens.

Linkage analysis showed no recombination between the locus for DC and RFLPs
identified by DXS52 in all three families. A combined maximum lod score of 2.00 was
observed at zero recombination fraction (table 1).

These results bring the total lod score for DC and DXS52 to 5.33 at zero recombination (table 2). The supporting recombination inter-
val is 0.00–0.10.

Discussion

Linkage analysis in one large family using multiple X chromosomal DNA polymor-
phisms has previously assigned the gene for X linked recessive dyskeratosis congenita to
Xq28. 14 Another family showed cosegregation of DC and G6PD deficiency 15 which also maps to
Xq28. Only one recombination between DC and G6PD was observed among nine post-
pubertal males. This study was, however, limited as the assay only allowed the genotype
of the females to be assigned on the basis of their offspring’s phenotypes.

The present study supports tight linkage between DC and loci on Xq28 and raises the
maximum lod score for DXS52 from 3.33 previously described 6 to 5.33 (table 2). These
results will allow further testing of other kindreds to identify genetic heterogeneity
which has been suggested on the grounds of clinical and pedigree data.

The authors would like to thank Professor N Saxe, Department of Dermatology, Groote
Schuur Hospital, Cape Town, Professor P Brighton, Department of Human Genetics,
University of Cape Town, Dr D Oscier and Dr J Hows, Royal Postgraduate Medical School,
Hammersmith Hospital, London, for providing clinical information on the families used in
this study.

3 Carter DM, Pan M, Gaynor A, McGuire J, Sibrack L. Poralenal-DNA cross-linking photoadducts in dyskerato-
5 Scoggins RB, Prescott KJ, Asher GH, Blaylock WK, Bright RW. Dyskeratosis congenita with Fanconi-type leukemia:
7 Dobal I, Drugy J, Williamon P, Oscier D, Hows J, Luzatto L. Dyskeratosis congenita fibroblasts are abnor-
9 Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol
10 Obrerie I, Dravya D, Camerino G, White R, Mandel JL. The telomeric region of the human X chromosome long arm:
11 Rigby PWJ, Dieckmann M, Rhodes C, Berg P. Labelling DNA to high specificity by in vitro nick translation with
12 Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific
13 Ott J. Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for
14 Gurnam A, Frumkin A, Adam A, Bloch-Shachar N, Rozenzain LA. X-linked dyskeratosis congenita with