SPRING BOOK REVIEWS

All titles reviewed here are available from the BMJ Bookshop, PO Box 295, London WC1H 9TE. Prices include postage in the UK and for members of the British Medical Society Overseas, but overseas customers should add 15% to the value of the order for postage and packing. Payment can be made by cheque in sterling drawn on a UK bank, or by credit card (Mastercard, Visa, or American Express) stating card number, expiry date, and full name.

The list of titles preceding this volume in the NATO Advanced Science Institution Series H (cell biology) contains expressions such as "signal transduction ... cell to cell junctions ... translational apparatus" which seem surprising bedfellows for a volume on chromosome 15q deletion disorders. I guess the cell biologists have turned the term "imprinting", a concept which has recently acquired quasi-religious significance for the clinical geneticist. Fortunately, many papers given at the first international workshop (May 1991) on Prader-Willi syndrome (PWS) and related disorders and collected together in this volume make no mention of imprinting and instead provide an up to date survey of clinical, cytogenetic, and molecular studies currently in progress. Although clinical aspects of PWS are given extensive coverage, considerably less space is devoted to Angelman syndrome (ANG). I chose this may to reflect current research activities and thus indicate potential for further clinical studies of the latter important disorder. Several patients with proximal 15q deletions, but neither of the above syndromes, are now being discussed in a single detailed contribution. Naturally PWS and Angelman syndrome are compared and contrasted in papers dealing with cytogenetic and molecular genetic findings. It is very helpful to have data from different research groups published back to back and it can be seen that no major discrepancies arise, although much remains unexplained. From my point of view, the conclusion worth emphasising is that careful clinical diagnosis remains crucial in PWS and Angelman syndrome. In summary, this volume will be useful in the clinic and in the laboratory for tackling diagnostic problems and for assessing the utility of molecular genetic investigations. However, its main value lies in graphically illustrating how little we actually know about these disorders and, in an account of the cell biology of PWS and Angelman syndrome will be disappointing. Perhaps NATO, having been relieved of weightier responsibilities, could be persuaded to sponsor a fresh appraisal of these two syndromes in five or 10 years time. A report of the meeting and abstracts of contributions to it were published in the *American Journal of Medical Genetics, volume 42, pp 220-69.*

JOHN TOLMIE

Readers of the Journal will be well acquainted with the technology and medical implications of the Human Genome Project. But perhaps no one has considered all the social, ethical, and legal consequences, and no doubt fewer will be aware of the political infighting which the Project has engendered. All these matters are discussed at great length in this new book of some 14 chapters, divided into three parts: History and politics, Technology, and Ethical and legal considerations.

The Project officially began in 1991 and is estimated to be completed in possibly 10 to 15 years time. One contributor believes that within 10 years, with advances in instrumentation and technology, a single technician may be able to sequence 10 base pairs a day (or 4 billion bases a year) at a cost of around a dollar a base pair. The contributors are all enthusiastic that this concentration of effort and resources is well justified, but it would have been valuable if we had the views of those who are not so enthusiastic of which there are, of course, many on both sides of the Atlantic.

Important ethical, legal, and social problems will be generated by the Project: matters of confidentiality, discrimination by employers, stigmatisation by society, sharing of results, and patenting of sequences, etc. To address these and similar concerns NIH has allocated 3% of its genome budget. Some consider this as evidence of a genuine concern with these matters. Others, I suspect, will realise that to really embark on any substantial programme will involve considerably more expenditure as well as an ongoing commitment.

Many of the contributors are internationally known experts and write with authority. They include, for example, James Watson (who has a PhD in physics, and the Name of Eugenics (Penguin) has become a classic), Judson, Gilbert, Caskey, and Nancy Wexler. James Watson’s ‘Personal View’ is particularly revealing when one realises that Bernadine Healy, who is now head of NIH, is replacing him as head of the Project.

As with many multi-authored texts, there is often overlap and repetition and there is occasionally an element of repetition — having said this, there is much to interest and provoke thought in this new text.

ALAN EMERY

This splendid volume is rather grandly called The Atlas of Mouse Development. Given the author’s approach it is difficult to see anyone else going through the exercise again, so that the title is probably justified. The aim of the book is to “provide an histological account of the development of the mouse spanning the period from fertilization to term”. The method used is to assemble a comprehensive collection of meticulously prepared and labelled histological sections at different gestations. The book is intended as a ‘workshop manual’ rather than a text book of embryology. As the author points out, it is difficult to reconstruct a three dimensional image in the mind from a series of sections. Although he recommends the exercise as ultimately rewarding, only those directly involved in studying mouse embryos will want to invest the considerable effort needed to attain this level of understanding.

The plates would have been better in colour, but again this would have made the price of the book prohibitive. Perhaps in the future some form of electronic publication, for example on CD-ROM, could be explored. There is also a collection of scanning EM photographs illustrating the development of different organ systems (for example, the palate, the eye, the limbs). These would be...