Filipino β^0 thalassaemia: a high Hb A_2 β^0 thalassaemia resulting from a large deletion of the 5' β globin gene region

P I Motum, A Kearney, T J Hamilton, R J Trent

Abstract
A large novel deletional β thalassaemia mutation associated with unusually high levels of haemoglobin (Hb) A_2 in heterozygotes is described in two unrelated subjects of Filipino background. The deletion was characterised by DNA mapping including pulsed field gel electrophoresis. Filipino β^0 thalassaemia extends for approximately 45 kb beginning approximately 1.5 kb 3' to the δ globin gene. It is the largest deletion to date which gives rise to the β^0 thalassaemia phenotype. This mutation, similar to previously described deletional β thalassaemias associated with high Hb A_2, removes sequences 5' to the β globin gene promoter and emphasises the functional importance of the 5' β globin region in eliciting the unusually high level of Hb A_2. This example also suggests that it is the 3' sequences which are transposed rather than the actual deletion size which are significant in the raised fetal haemoglobin (Hb F) found in some of the thalassaemias. (J Med Genet 1993;30:240-4)

The genes on the human β globin gene cluster are arranged in their order of temporal expression during development, 5'-c-Gy-Ay-\$-3', on chromosome 11p15. In normal adults the β globin gene encodes the major adult haemoglobin, Hb A ($\alpha_2\beta_2$), which accounts for more than 95% of normal haemoglobin, while the δ globin gene produces the minor haemoglobin, Hb A ($\alpha_2\delta_2$), which is usually less than 3.2% in amount. In heterozygous β thalassaemia, the Hb A_2 is raised approximately two fold, but it is rarely above 6-5%. Unusually high levels of Hb A_2 have been observed in β thalassaemia heterozygotes with deleterional defects that involve the 5' segment of the β globin gene and upstream promoter sequences, but leave the δ globin gene intact.

A new, large deletion was detected in two unrelated subjects of Filipino background with the phenotype of high Hb A_2, β^0 thalassaemia. This deletion started 5' to the β globin gene, and 3' to the previously described Dutch β^0 thalassaemia and extended for approximately 45 kb. The 5' breakpoint of the deletion was localised to an approximately 600 base pair (bp) region 3' to the δ globin gene by restriction endonuclease mapping. The 3' extent of the deletion was not able to be mapped using existing probes 3' to the β globin gene. The size of the deletion (~45 kb) was estimated by pulsed field gel electrophoresis. Previous deletions of similar size are associated with increased fetal haemoglobin (Hb F) and are found in (β^0) β thalassaemia or hereditary persistence of fetal haemoglobin (HPFH). However, in the current deletion the Hb F levels were not remarkably raised. These data show that DNA sequences surrounding this deletion breakpoint have more relevance to the Hb F phenotype than the actual deletion size and confirm the association between loss of the 5' β globin gene specific promoter region and a very high level of Hb A_2.

Materials and methods
PATIENT SAMPLES
Whole blood samples were collected with heparin or EDTA as anticoagulants from a 35 year old female (NP) detected on a routine screen and a 30 year old female (LD) as part of routine antenatal tests. Both subjects were Filipino immigrants.

HAEMOGLOBIN ANALYSES
Haematological data were obtained from freshly collected blood samples using an automated cell counter. Hb electrophoresis was performed at pH 8.9 on cellulose acetate strips in a Tris-EDTA-borate buffer. Hb A_2 was quantitated by elution after electrophoresis on cellulose acetate at pH 8.9. Hb F was quantitated by a modified Betke method.

DNA ANALYSIS
Genomic DNA was prepared from peripheral blood buffy coats by phenol-chloroform extraction, digested with restriction endonucleases, separated by electrophoresis through 0.8%-agarose gels, and transferred by Southern blotting. DNA probes were labelled with ^{32}P dCTP. Membranes were hybridised overnight at 65°C with 105 cpm/ml ^{32}P labelled probe and washed at 65°C to a stringency of 0.1 X SSC and 0.1% SDS for one hour, followed by autoradiography. Three probes from the β globin gene cluster were used: (1) 2.3 kb $Prl I$ 6; (2) 4.4 kb $Prl I$ β; (3) 2 kb $Bgl II/Xba I$ fragment of the ψ β gene. DNA probes from 3' to the β globin gene cluster used included: (1) pRK29, a 1.2 kb $Eco RI$ fragment approximately 18 kb 3' to β^0; (2) the 3D probe, a 1.0 kb $Bam HI/Eco RI$ genomic fragment from the 3' end of Negro HPFH-1; (3) the H500 probe, a 0.5 kb HindIII unique fragment approximately 25 kb 3' to the 3' end of Negro HPFH type 1 obtained.
from the p3'N10R; (4) the 3' IH probe, a 0.75 kb HindIII-EcoRI fragment from a plasmid containing a 1.1 kb BamHI-BglII genomic fragment obtained from the 3' end of an Indian HPFH deletion, approximately 90 kb 3' to the β globin gene; and the 3' VH probe, a 873 bp SacI-BamHI fragment from the 3' breakpoint of Vietnamese HPFH (Motum et al, in preparation). The positions of these probes are illustrated in fig 1B.

PULSED FIELD GEL ELECTROPHORESIS
DNA for pulsed field gel electrophoresis was prepared from fresh lymphoblastoid cells from a Filipino β-thalassaemia heterozygote (NP) and a normal subject. DNA was isolated in agarose blocks and digested with the restriction enzyme SfiI. Specimens were then electrophoresed on the Biorad CHEF-DRII system (Biorad, Richmond CA) for 24 hours at 200 V with pulse times ranging from 20 to 50 seconds. DNA was transferred onto nylon filters (Hybond, Amersham) and hybridised with the PstI δ, PstI β, and the 3' VH probes labelled by the random hexamer primer method.

Results
HEMATOLOGY
Both subjects had a microcytic hypochromic anaemia and haematological parameters consistent with β thalassaemia trait but had unusually high levels of Hb A2 of 7.7 and 7.5% (table 1). The Hb F level was normal in LD and raised in NP at 4.0%. The latter is only slightly higher than that normally seen in heterozygous β thalassaemia.

RESTRICTION ENDONUCLEASE ANALYSIS
DNA from NP and LD was digested with various restriction enzymes and hybridised to the ψβ, PstI δ, and PstI β probes from the β globin gene cluster to define the 5' breakpoint of the deletion. Subsequently these digests were hybridised to the pRK29, 3' VH, 3' IH, H500, and 3D probes to characterise the 3' breakpoint. In addition to the normal bands, restriction fragments of abnormal size were also present with PstI δ probe (table 2, fig 2). Since NP and LD are heterozygotes, the normal bands are derived from the wild type β globin allele, while the abnormal fragments are from the mutant allele. Hybridisation with the ψβ and PstI β probes did not show any abnormal bands although the intensity of hybridisation for PD with the PstI β probe was significantly reduced. Normal bands were detected with all the 3' globin cluster probes. Reduced intensity of hybridisation was shown with the pRK29, 3' VH, and 3' IH probes. Hybridisation with the H500 and 3D probes was entirely normal. Using this information the 5' breakpoint was localised between the AccI site (present) and its nearby 3' EcoRI site (deleted) downstream from the 5' globin gene (fig 2). The 3' breakpoint could not be mapped precisely on restriction enzyme analysis using the probes available. However, it extended beyond the 3' IH probe which was deleted but did not

| Table 1 Haematological parameters in heterozygous Filipino β thalassaemia. |
|---------------------------|------------------|----------------|------------------|
| Subject | Sex/age | Hb (g/dl) (12.5-16.5) | MCV (fl) (76-96) | HCH (g/l) (27-31) | Hb A2 (%) (5-37) | Hb F (%) (<3.0) |
| NP | F/35 | 12.7 | 72 | 22 | 7.7 | 4.0 |
| LD | F/30 | 10.8 | 67 | 23 | 7.5 | 1.0 |

The normal ranges are indicated below the parameter in parentheses.

<p>| Table 2 Comparison of restriction fragment lengths in normal subjects and heterozygous Filipino β thalassaemia. |
|---------------------------|------------------|----------------|------------------|</p>
<table>
<thead>
<tr>
<th>Probe</th>
<th>Enzyme</th>
<th>Normal DNA</th>
<th>NP & LD DNA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PstI</td>
<td>AccI</td>
<td>3.5, 2.4</td>
<td>3.5, 2.4</td>
</tr>
<tr>
<td>AluI</td>
<td>4.4</td>
<td>4.4, 4.0</td>
<td></td>
</tr>
<tr>
<td>BamHI</td>
<td>15.4, 4.7</td>
<td>15.4, 4.7, 9.6</td>
<td></td>
</tr>
<tr>
<td>BglII</td>
<td>20</td>
<td>30, 16.5</td>
<td></td>
</tr>
<tr>
<td>BglI</td>
<td>8.5, 5.0</td>
<td>8.5, 5.0</td>
<td></td>
</tr>
<tr>
<td>EcoRI</td>
<td>2.3, 1.8</td>
<td>2.3, 1.8, 0.6</td>
<td></td>
</tr>
<tr>
<td>EcoRV</td>
<td>15.5</td>
<td>15.5, 8.3</td>
<td></td>
</tr>
<tr>
<td>HpK1</td>
<td>7.5, 2.0, 1.5</td>
<td>7.5, 2.0, 1.5</td>
<td></td>
</tr>
<tr>
<td>HindIII</td>
<td>17.5, 7.8</td>
<td>17.5, 7.8, 16.0</td>
<td></td>
</tr>
<tr>
<td>NcoI</td>
<td>8.4, 4.0</td>
<td>8.4, 4.0, 2.4</td>
<td></td>
</tr>
<tr>
<td>PvuII</td>
<td>12.8</td>
<td>12.8, 16.0</td>
<td></td>
</tr>
<tr>
<td>SacI</td>
<td>16.4</td>
<td>16.4, 18.0</td>
<td></td>
</tr>
<tr>
<td>XbaI</td>
<td>11.1</td>
<td>11.1, 11.1</td>
<td></td>
</tr>
</tbody>
</table>

*Abnormal bands in the probands are underlined.
involve the H500 probe which was present (fig 1).

SIZE OF THE DELETION ON PFGE

DNA from NP was digested with SfiI and hybridised consecutively with probes PstI δ, PstI β, and 3'VH. In addition to the normal ~140 kb band there was a new 95 kb band detected with the PstI δ probe (fig 1). There were no abnormal bands detected with the PstI β or 3'VH probes consistent with deletion of these loci. These data indicate that the deletion is ~45 kb in size.

Discussion

There are currently over 100 mutations associated with β thalassaemia. The majority involve single base substitutions producing transcription, RNA modification, and translation mutants. There are only eight deletion forms of β thalassaemia. These range from 290 bp to 12-6 kb in size, and are rare except for the Asian Indian deletion type (fig 3). In this study we have defined a new Filipino type of thalassaemia deletion of approximately 45 kb extending from a region 1-1 to 1-7 kb 3' to the δ globin gene. The 3' breakpoint of the Filipino type β thalassaemia could not be precisely defined owing to the limited restriction map and sequence data 3' to the δ globin gene. However, the deletion is described in a family which still retains the phenotype of β thalassaemia.

The Filipino type β thalassaemia defect joins a discrete groups of thalassaemias which have large deletions of 30 to 50 kb in size. Other members of this group include German Gγ(AYβ)thalassaemia, Belgian Gγ(AYβ)thalassaemia, Turkish Gγ(AYβ)thalassaemia, Black Gγ(AYβ)thalassaemia, Indian HPFH (HPFH-3), Italian HPFH (HPFH-4), and Vietnamese HPFH (Motum et al, in preparation). All except the Filipino β thalassaemia are characterised by significantly raised Hb F levels. Although some increase in Hb F was observed in one of the two affected subjects, it was only a modest rise (4-0%) and lower than those usually found in heterozygotes with deletion HPFH and Gγ(AYβ)thalassaemia (ranges in Hb F of 10 to 30% and 4 to 19% respectively). These observations would suggest that the functional nature of the sequences transposed to the β globin gene cluster rather than deletion size is an important determinant of Hb F phenotype.

β thalassaemia heterozygotes with Filipino type β thalassaemia have unusually high levels of Hb A2 (mean 7-6%) similar to other examples of deletional β thalassaemia which remove the 5' β globin gene and its associated promoter sequences (fig 3). Family studies in heterozygotes for β thalassaemia and a δ chain variant have shown that the increased Hb A2 in β thalassaemia is derived from δ chains in cis and trans to the β thalassaemia gene. However, a more recent study has shown that the excess Hb A2 is derived from the δ gene in cis to the deletional β thalassaemia allele.
molecular feature of the high Hb A₂-producing deletions is their 5' breakpoint regions which lie upstream from the β mRNA cap site.

Thus the β globein gene promoter TATA, CCAAT, and CACCC boxes which are involved in regulation of transcription are deleted.¹⁷ The mechanism(s) by which sequences in the 5' β globein gene might influence the δ and γ globein gene expression have not been fully elucidated. Deletions removing the β globein gene promoter regulatory sequences could alter competition for limiting transcription factors and make the latter more available to the δ globein promoter to increase transcription of the δ globein gene. If this were the mechanism for the raised Hb A₁ it should affect both the δ gene in cis and in trans to the β thalassaemia allele.

Alternatively it has been suggested that the transcription of the δ β globein gene promoter could be influenced by loss of the 5' β promoter, if both are affected by the same 3' β enhancer.⁵ Enhancers have been identified downstream from the Aγ⁶ and β globein genes⁹ and on either side of the β globein gene cluster.⁴⁰ In the latter may be found the locus control regions (LCRs) which consist of five DNase I hypersensitive sites 5' to the ε globein gene and one site 21-34 kb (HGS VI) 3' to the β globein gene. Transgenic and transfection experiments have confirmed the critical role played by the LCR in globin gene regulation.⁴⁰¹ The LCR is thought to represent one mechanism by which deletions of the β globein cluster can have cis acting effects over considerable distances.⁴⁰ In the deletional β thalassaemias the absence of a functional β globein gene promoter might permit an enhancer such as the LCR to interact with the δ globein gene in cis. Thus the 3' breakpoint in itself does not appear to play a role in the generation of the high Hb A₁ β thalassaemia phenotype, but it may influence the degree of γ chain compensation.

This project was supported by the National Health and Medical Research Council of Australia. We would like to thank the following people for their kind gift of DNA probes: T. Maniatis (Boston) Pst I and Pst I δ; D R Higgs (Oxford) ψβ; R Kaufman (North Carolina) PRK29; D Mager (Vancouver) and O Smithies (North Carolina) p3'NOR and p3'TH; and B Forget (New Haven) 3D. We would like to thank Ms P S Jones, Prince of Wales Hospital, Sydney, for referring NP to us and we are grateful for the cooperation of NP in this study.

⁶ Gilman JG. The 12-kb haplotype in Dutch β-thalas-

Filipino β thalassaemia

Mager DL, Henthorn PS, Smithies O. A Chinese Gγ(Aβγ) thalassemia deletion: comparison to other dele-

Codrington JF, Li HW, Kutlar F, Gu LH, Ramachandran

Filipino β thalassaemia

Motum, Kearney, Hamilton, Trent

