Huntington’s disease in Grampian region: correlation of the CAG repeat number and the age of onset of the disease

Sheila A Simpson, Mark J Davidson, Lilias H Barron

Abstract
The identification of an unstable trinucleotide repeat as the mutation responsible for Huntington’s disease (HD) has given the hope that additional information can be provided about age of onset and mode of action of the mutated gene. We present in this paper results of a clinical and molecular study of 82 patients affected with HD from 46 pedigrees within the Grampian region, Scotland. Our results show a correlation between age of onset and size of the CAG expansion. This study has produced no overlap in mutation size between affected and unaffected alleles. The sex of the parent transmitting the mutated allele and the size of the normal allele have no significant effect on the clinical features of the disease. In the three juvenile cases the affected parent was the father but the number of cases is too small to produce statistical significance. An increase in the CAG repeat size is shown in the transmission of the gene in five cases, accompanied by an earlier age of onset in four; in three of these cases, the affected parent was the father. Eleven sib pairs were studied and there is a negative correlation between the difference in age at onset and the difference in repeat size. Thus there is some evidence of a relationship, but this is not statistically significant because of the small numbers involved. The presence of the same or different normal allele had no effect on age of onset in this small group. We suggest that additional factors, as yet unrecognised, influence the age of onset and clinical presentation of HD.

Methods
The expansion of the CAG repeat in DNA from leucocytes was amplified using the PCR method of Warner et al. Accurate sizing was determined using radiolabelled dTTP which gives single strand labelling. Our sizes were verified against sequenced clone L191F1. Only DNA samples from Grampian pedigrees were analysed; no samples from persons at risk or of uncertain clinical diagnosis were used.

Results

CAG REPEAT LENGTH
The range of CAG repeat length in our group from 46 kindreds is 39 to 67 and the frequency of the repeat sizes is shown in fig 1. Fig 2 illustrates the range of the normal alleles which is 13 to 33. No difference was noted between the sexes, and there is no overlap between the sizes of the normal allele and the affected allele.

CAG REPEAT LENGTH AND AGE OF ONSET
Fig 3 shows the age of onset and the associated mutation. Our results show a significant nega-
Huntington's disease in Grampian region: correlation of the CAG repeat number and the age of onset of the disease

The CAG repeat size in sibs

Table 1 describes 11 sib pairs from the Grampian families. We have found a negative correlation (−0.29) between the difference in age of onset and the difference in size of the CAG repeat, but this was not significant because of the small numbers involved. The presence of the same or different normal allele in the sibs has no effect on age of onset in our group.

A further two sets of sibships of three are not described in Table 1. In one trio, two who shared the same normal allele (16), had onset between 39 and 40 years, but their mutation sizes were 46 and 43. The third sib, with a different normal allele (17), but the same smaller mutation size of 43, had onset at 46 to 48 years. The second trio had two sibs with the same CAG repeat sizes (42 in the mutated gene and 22 in the normal allele) and psychiatric mode of onset, but a difference in age of onset of 10 years (29 to 31, 41 to 43). The third sib from this group had a motor onset of disease at the age of 39 to 41, and a mutation size which had increased to 46. In addition the normal allele was smaller (16 CAG repeats). Both sets of sibs had inherited the disease from their mother.

Transmission of the mutated gene

Six parent-offspring results are available (Table 2). The transmission of HD was from the mother in three cases and from the father in three, although two sibs are included who inherited the disease from their father. Subjects who have inherited the disease from their father have a greater increase in number of CAG repeats and show an earlier age of onset than those who have inherited the HD gene from their mother. This small number of family groups is not suitable for statistical analysis.

Discussion

The definition of the mutation responsible for HD was long awaited and there were hopes that it would explain the variety of clinical signs among sufferers, the wide variation in ages of onset, and the phenomenon of anticipation when the disease is inherited from the father.

Our results support the finding that an expansion in the CAG sequence in the HD gene is present in those affected by the disease. Furthermore, we have no overlap in the number of repeats between affected and nor-
Table 1 Sibs, change in CAG repeat number and age at onset.

<table>
<thead>
<tr>
<th>Sib pair: difference in years in age of onset</th>
<th>No of pairs with same non-HD chromosome</th>
<th>No of pairs with different non-HD chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expans same (Expans diff)</td>
<td>Expans same (Expans diff)</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td><2</td>
<td>1* (+1)</td>
<td>1* (+18)</td>
</tr>
<tr>
<td>3-4</td>
<td>1* (+1)</td>
<td>1* (+3)</td>
</tr>
<tr>
<td>5-10</td>
<td>1* (+3)</td>
<td>1* (+2)</td>
</tr>
<tr>
<td>>20</td>
<td>1 (+1)</td>
<td>1 (+2)</td>
</tr>
<tr>
<td>* Father affected.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 The increase in CAG repeat number on transmission, difference in age at onset, and the sex of the transmitting parent.

<table>
<thead>
<tr>
<th>Mutation in father (age of onset)</th>
<th>Mutation in mother (age of onset)</th>
<th>Mutation in offspring (age of onset)</th>
<th>Repeat number difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 (39-41)</td>
<td>67 (18-20)</td>
<td>+22</td>
<td></td>
</tr>
<tr>
<td>39 (40-51)</td>
<td>45 (16-20)</td>
<td>+6</td>
<td></td>
</tr>
<tr>
<td>39 (49-51)</td>
<td>45 (27-29)</td>
<td>+4</td>
<td></td>
</tr>
<tr>
<td>43 (29-31)</td>
<td>45 (37-39)</td>
<td>+2</td>
<td></td>
</tr>
<tr>
<td>43 (39-41)</td>
<td>45 (39-41)</td>
<td>+2</td>
<td></td>
</tr>
<tr>
<td>41 (39-61)</td>
<td>41 (42-44)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* Sibs.

onset of the disease or the size of the mutation found in the patient, although an effect of paternal transmission on age of onset is an accepted phenomenon. Six results from two generations were studied from our group, and these are shown in table 2. Although the numbers are too small for statistical significance, this illustrates the larger expansion in the paternaly transmitted allele which was in each case accompanied by an earlier age of onset of more than 20 years. The two sibs described had onset of symptoms more than 20 years earlier than their father, although the mutation has increased only by four and six repeats from 39 CAG repeats. The same size of normal allele was present in both offspring. Where inheritance was maternal, two cases had earlier onset and one later (about eight years), and CAG repeat number was unchanged or slightly increased. We anticipate additional results from subjects from our high risk group to investigate this phenomenon further.

The effect of the normal allele has been considered by Farrer et al13 who suggested that the expression of HD is modulated by the normal HD allele or by a closely linked locus. This work was accomplished before the definition of the gene. Individual cases from our study are consistent with this hypothesis. One of our patients inherited an unchanged mutation of 41 CAG repeats from their mother but their age of onset is 42 to 44, more than 15 years earlier than their parent. The paternal (normal) allele was 31 in the mother and 23 in her offspring. However, our findings to date show no correlation between normal allele size and age of onset, or with the sex of the unaffected parent and age of onset of HD in the offspring.

These results from the well defined population in Grampian region show that there is a correlation between age of onset and CAG expansion size in the mutated HD gene, but there are other factors which have yet to be defined which are modifying the action of this mutated gene. There is no evidence from our results that the CAG repeat in the normal allele is contributory.

Persons at risk of HD may receive an accurate prediction of their status, but caution is advised about prediction of age at onset or type of onset in this patient group.

We acknowledge the help of Susan Holloway (Department of Human Genetics, University of Edinburgh) in the statistical analysis of our data and Dr John C S Dean (Medical Genetics, Aberdeen Royal Hospitals NHS Trust, Aberdeen) for his constructive comments.

6 Crawford D, Dodge A, Kerzin-Storrar L, Harris R. Uptake...

