The 45XO/46XY Mosaic Intersex Syndrome

W. P. U. JACKSON, MARGARET HOFFMAN, and HAWA MAKDA

From the Endocrine Research Group of the Council for Scientific and Industrial Research, the Department of Medicine, University of Cape Town, and Groote Schuur Hospital, Cape, South Africa

A new clinical intersexual syndrome is becoming apparent as an increasing number of subjects are being described who have the chromosome mosaicism designated as XO/XY. These patients are most frequently phenotypic females with an enlarged clitoris and internally a testis and contralateral 'streak gonad', but there are several variations on this general theme.

We here describe two examples of the XO/XY syndrome and briefly review other reported cases (Table I). Our own patients, one a phenotypic female and the other a 'fertile' phenotypic male, show certain unusual features and a clear connexion with Turner's syndrome.

Case Reports

Case A.I. (No. 14 in Table I) (Fig. 1). A coloured female was seen by us at the age of 16 because of clitoral enlargement (which had first been noted in infancy), primary amenorrhoea, shortness of stature, and mental retardation. Little family history was available, but her twin brother and younger sister are reported to be quite normal. Her height was 55·5 in. (140 cm.) with lower segment 27 in (68 cm.) and span 56 in. (142 cm.). There was no webbing of the neck; the hair-line was normal. A pigmented naevus was present on the face. The chest was shield-like; there was cubitus valgus; there were no short metacarpals. Pubic hair was scanty and there was no axillary hair. Breasts were completely undeveloped. On examination of the external genitalia the clitoris was noted to be 4 cm. long with a urethral opening just anterior to the vagina. The vagina was 4 cm. long and no cervix was felt.

Bone-age was 13 years. There was no evidence of osteoporosis.

Radiological examination of the abdomen and intravenous pyelogram showed kidney shadows and function to be normal. 17-ketosteroids 9.4 mg./24 hours (Appleby, Gibson, Norymberski, and Stubbs, 1955), 17-OH-corticosteroids, 14.4 mg./24 hours (Bloomberg, Alldis, Jankelowitz, and Wolmer, 1955) urinary gonadotropins (FSH), 96 mouse uterine units in 24 hours (normal adult female 6-48 (Bloomberg et al., 1955)). Colour vision was normal (Ishihara charts).

Laparotomy revealed a rudimentary uterus, 3 cm. × 1 cm. From the angles of the uterus ran rudimentary tubes 5 cm. long. The fimbriated end of the left tube was seen, while the right was suspended from the posterior layer of the broad ligament (a vas deferens). On the left there was a thin ridge of whitish tissue, 3 cm. long, in the primitive ovarian position. On the right side was a gonad, 1 cm. × 0·5 cm., resembling testicular tissue. Kidneys were normal. The uterus, tubes, and all gonadal tissue were removed.

Received June 28 1965.
TABLE I
DETAILS OF CASES OF XO/XY MOSAIC

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Author</th>
<th>Year</th>
<th>Age (yr.)</th>
<th>Stature</th>
<th>Turner's Syndrome Anomalies</th>
<th>External Sex Features</th>
<th>Internal Sex Apparatus</th>
<th>Gonadal Histology</th>
<th>Chromosomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blank, Bishop, and Caley</td>
<td>1960</td>
<td>55</td>
<td>Short</td>
<td>Low IQ, short neck, broad</td>
<td>(1) XO/XY</td>
<td>Female Phenotype</td>
<td>Not done</td>
<td>41XO/58XY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>chest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hirschhorn, Decker and Cooper</td>
<td>1960</td>
<td>3 mth.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>12XO/8XY (bone-marrow)</td>
</tr>
<tr>
<td>3</td>
<td>Jacobs, Harnden, Buckton, Court Brown, King, McBride, MacGregor, and Maclean</td>
<td>1961</td>
<td>26</td>
<td>Short</td>
<td>‘Undeveloped genitalia’</td>
<td>Bilateral 'streak gonads'</td>
<td></td>
<td>Ovarian stroma only</td>
<td>15XO/84XY (blood)</td>
</tr>
<tr>
<td>4</td>
<td>Jacobs et al.</td>
<td>1961</td>
<td>30</td>
<td>4 ft. 10 in. (147 cm.)</td>
<td>Low IQ</td>
<td>‘Undeveloped genitalia’</td>
<td>Bilateral 'streak gonads'</td>
<td>Connective tissue and theca-like cells</td>
<td>140XO/86XY (blood)</td>
</tr>
<tr>
<td>5</td>
<td>Judge, Thompson, Wilson, Wilson, and Thompson Miller</td>
<td>1962</td>
<td>26</td>
<td>5 ft. 8 in. (173 cm.)</td>
<td>Low IQ</td>
<td>‘Variant of Turner’s syndrome’</td>
<td>—</td>
<td>Right—stroma only, left not examined</td>
<td>35XO/38XY (blood)</td>
</tr>
<tr>
<td>6</td>
<td>Miller</td>
<td>1962</td>
<td>—</td>
<td>‘Variants of Turner’s syndrome’</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Willems, Van Brink, and Los</td>
<td>1962</td>
<td>22</td>
<td>4 ft 9 in. (145 cm.)</td>
<td>Short</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Turner, Greenblatt, and Dominguez</td>
<td>1963</td>
<td>14</td>
<td>Cubitus valgus, webbed neck, low hair-line</td>
<td>—</td>
<td>No breasts, ‘boyish’, large clitoris</td>
<td>Acne, no breasts, low voice</td>
<td>Vagina, uterus, tubes</td>
<td>One gonad absent, other</td>
</tr>
<tr>
<td>9</td>
<td>Turner et al.</td>
<td>1963</td>
<td>13</td>
<td>Short</td>
<td>Low hair-line</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10XO/27XY (blood)</td>
</tr>
<tr>
<td>10</td>
<td>Mellman, Klevit, Yakov, Moorhead, and Saksela</td>
<td>1963</td>
<td>9</td>
<td>Short</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>11XO/48XY (blood)</td>
</tr>
<tr>
<td>11</td>
<td>Greenblatt, Dominguez, Mashesh, and and Demos Greenblatt et al.</td>
<td>1964</td>
<td>41</td>
<td>—</td>
<td>—</td>
<td>‘Turner-like’</td>
<td>—</td>
<td>—</td>
<td>7XO/17XY (blood)</td>
</tr>
<tr>
<td>12</td>
<td>Greenblatt et al.</td>
<td>1964</td>
<td>14</td>
<td>—</td>
<td>—</td>
<td>Large clitoris</td>
<td>Right testis, left—streak</td>
<td>Right—immature testis, left—dyshogenic gonad</td>
<td>20XO/63XY</td>
</tr>
<tr>
<td>13</td>
<td>Sohval</td>
<td>1964</td>
<td>4 mth.</td>
<td>—</td>
<td>—</td>
<td>Large clitoris, no secondary sex characters</td>
<td>Uterus, bilateral tubes, left testicle, right</td>
<td>Right—connective tissue, left—tubules, Leydig cells</td>
<td>26XO/4XY (blood)</td>
</tr>
<tr>
<td>14</td>
<td>Present case (A.I.)</td>
<td></td>
<td>16</td>
<td>Short</td>
<td>Shield-like chest, cubitus valgus, low IQ, pigmented naevi</td>
<td>No breasts, scanty sex hair, large clitoris</td>
<td>Rudimentary uterus tubes, right testis, left streak</td>
<td>Right—tubules with Sertoli cells, no spermatogenesis, Leydig cells, left—stromal tissue only</td>
<td>26XO/2XY (skin)</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Year</td>
<td>Age (years)</td>
<td>Height (meters)</td>
<td>Phenotype</td>
<td>Tumour</td>
<td>Related Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>De La Chapelle and Hortling</td>
<td>1962</td>
<td>42</td>
<td>1.60</td>
<td>(2) XO/XY Male Phenotype</td>
<td>Breasts ±, hypoplasia, single gonad in scrotum</td>
<td>Left testis, tubules and Leydig cells, no spermatogenesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Ferrier, Gartler, Waxman, and Shepard</td>
<td>1962</td>
<td>11</td>
<td>1.48</td>
<td>Single small gonad in scrotum</td>
<td>Rudimentary uterus, tubes; two gonads</td>
<td>Right and left testis with tubules and spermatogenesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Ferrier, Ferrier, Klein, and Fernex Present case (A.M.)</td>
<td>1963</td>
<td>35</td>
<td>1.55</td>
<td>Pigmented naevi, blue sclera, short metacarpal</td>
<td></td>
<td>Left testis tubules and Leydig cells, no spermatogenesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>25</td>
<td>1.52</td>
<td>(3) XO/XY With Tumour</td>
<td></td>
<td>22XO/25XY (blood)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Miller</td>
<td>1963</td>
<td>Female</td>
<td></td>
<td>'True hermaphrodite'</td>
<td>Vagina, uterus, and tubes, left gonad missing</td>
<td>Right—testicular tissue, ovarian stroma, and undifferentiated seminoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Lewis, Mitchell, and Foss</td>
<td>1963</td>
<td>45 Male</td>
<td></td>
<td>Hypospadias, small vaginal orifice (married)</td>
<td>Uterus rudimentary, Fallopian tube</td>
<td>Right—ovarian tissue; left—ectopic malignant seminoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Soval</td>
<td>1964</td>
<td>Female</td>
<td></td>
<td>Hypospadias, small genitalia, small breasts</td>
<td>Uterus and cervix</td>
<td>Right—invasive neoplastic tissue; left—fibrous streak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Conen et al.</td>
<td>1961</td>
<td>13 Female</td>
<td>1.55</td>
<td>(4) Closely Related Cases (no XO/XY)</td>
<td>No breasts, large clitoris, deep voice</td>
<td>Right—ovarian stroma, left—testis and epididymis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Schuster and Motulsky</td>
<td>1962</td>
<td>18 Female</td>
<td>1.55</td>
<td>No breasts, labioscrotal fusion, large phallic</td>
<td>Small vagina, uterus, and tubes</td>
<td>Left—fibrous tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Miles et al.</td>
<td>1962</td>
<td>½ Male</td>
<td></td>
<td>Phallus 1.5 cm, large labia, no gonads felt</td>
<td>Normal uterus and tubes, Uterus, vagina, and tubes</td>
<td>Both gonads infantile, seminiferous tubules and rete testis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Bioise et al.</td>
<td>1960</td>
<td>18 Male</td>
<td></td>
<td>Hypospadias, bifid scrotum, small penis 'ambiguous' sex</td>
<td>Uterus and tubes</td>
<td>Right—connective tissue, left—rudimentary testis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Ferguson-Smith and Johnston</td>
<td>1960</td>
<td>Male</td>
<td></td>
<td>Large phallus, small vagina</td>
<td>Rudimentary uterus and tubes</td>
<td>Testis on one side, streak on other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Bottura and Ferrari</td>
<td>1962</td>
<td>9 Female</td>
<td></td>
<td>Extra-abdominal 'testis' in left labial fold, no breasts, large clitoris</td>
<td></td>
<td>Right—immature testis, left—agenesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Atkins and Engel</td>
<td>1962</td>
<td>22 Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dashes indicate that information is not recorded.

The 45,XY Mosaic Intersex Syndrome

[Note: The table continues with more cases and descriptions of phenotypes, tumours, and related cases.]
Histology. The right gonad showed numerous tubular structures lined by Sertoli cells (Fig. 2). There was no evidence of spermatogenesis. Leydig cells were numerous and mature looking, and no ovarian tissue was demonstrated. The streak of tissue removed on the left side consisted of dense stromal tissue which might have been ovarian. There were scattered groups of cells in relation to nerve cells and blood vessels which resembled Leydig cells.

Cytogenetic Investigations. Skin (nuclei of stratum germinativum (Harnden, 1960)): chromatin negative; buccal smear (Ross, 1960): chromatin negative; polymorphonuclear leucocytes (Davidson and Smith, 1954): no drumsticks seen in 500 cells. Leucocyte culture was after the method of Moorhead, Nowell, Mellman, Battips, and Hungerford (1960) (Table II).

TABLE II
CHROMOSOME ANALYSES IN CASE A.I.*

<table>
<thead>
<tr>
<th>Tissue</th>
<th>No. of Chromosomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Lymphocytes of blood:</td>
<td></td>
</tr>
<tr>
<td>1st culture</td>
<td>13</td>
</tr>
<tr>
<td>2nd culture</td>
<td>2</td>
</tr>
<tr>
<td>Skin</td>
<td>1</td>
</tr>
</tbody>
</table>

*The XO and XY mitotic lymphocyte nuclei were exactly similar to those of A.M. (Fig. 6 and 7) and are not separately depicted. The '43 chromosome' nuclei are also not shown here but photographs are available on request.
The 45XO/46XY Mosaic Intersex Syndrome

All cells with 45 chromosomes had only 15 in the X–6–12 group (i.e. presumptive XO pattern), and 5 of the 6 cells with 46 chromosomes contained a Y chromosome.

Management. After discussion and explanation, clitorectomy was performed and the patient was started on oestrogen therapy.

Case A.M. (No. 18 in Table I) (Fig. 3). A coloured male aged 25 years was admitted to hospital with an 'acute abdomen', for which no cause was found.

The patient had a masculine build with short stature; height being 56 in. (142 cm.) lower segment 28 in (71 cm.), and span 55.5 in. (140 cm.). Hair distribution was male with temporal recession. He shaved frequently. He had numerous pigmented naevi, and his sclerae were deep blue. The fourth metacarpal of the left hand and the left foot were very short.

Examination of the external genitalia revealed a moderate-sized hypospadic penis. A rugose scrotum was present with a testis on the right side which was clinically normal. Skeletal radiographs showed a gynaecoid pelvis. There was no evidence of osteoporosis. All epiphyses were fused.

Radiographs of the abdomen and intravenous pyelogram revealed kidney shape and function to be normal. 17-ketosteroids, 15.7 mg./24 hours; 17-OH-corticosteroids, 21.2 mg./24 hours; and urinary FSH, 48 mouse units/24 hours.

Laparotomy revealed a rudimentary uterus joining a vagina which ended in a blind pouch. From the left cornu of the uterus a tube was seen leading to a white ridge of tissue resembling the streak of 'ovarian agenesis' (Fig. 4). A vas deferens was seen on the right leading to the uterus. The vas was divided, and uterus, tube, and streak gonad were removed and biopsy taken from the right descended testes.

Histology. The right descended gonad showed features of normal testicular tissue with minimal spermatogenesis (Fig. 5). Histology of the streak gonad is unfortunately not available. Substance aspirated from the uterus was found to contain spermatozoa.

Cytogenetic studies. (Fig. 6 and 7, and Table III.) Buccal smear, chromatin negative; blood leucocytes, no drumsticks present.

TABLE III

<table>
<thead>
<tr>
<th>Tissue</th>
<th>45</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Skin</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Other tissues were cultured but the cultures became infected. The cells with 45 chromosomes had only 15 in the X–6–12 group and no Y, while those with 46 chromosomes contained a Y.
Comment

The findings of so many nuclei with only 43 chromosomes on the first blood culture in Case A.I. is not easily explained. In all instances three small chromosomes were missing, presumably the Y chromosome and two from pairs 19 and 20. The relative constancy of the abnormality and lack of any cells with 44 chromosomes suggest that the '43 cells' were not simply an artefact of the culture, though it is simplest to assume that this was the case.

If the XO/XY ratios are true reflections of the in vivo situation, then in these two cases there might well be a connexion between the proportion of cells with a Y chromosome and the degree of masculinity.

The degree of development of the single testis in the second case is remarkable; as far as we know this is the only example of a fully-descended sperm-producing testis yet found in this syndrome. The finding of spermatozoa in the patient's uterus is also unusual.

It is noteworthy that both patients showed certain features characteristic of Turner's syndrome apart from the single 'streak gonad', in that both were short in stature and both had typical minor developmental anomalies.

A summary of the cases that we have found reported in recent literature is presented in Table I.

Discussion

Clinical Features. The clinical features of XO/XY chromosomal mosaics vary widely. The majority appear female, with vagina and uterus and without descended gonads. All of these show some degree of virilization, an enlarged clitoris being the most frequent indication. At puberty primary amenorrhoea is the rule, and breasts remain undeveloped. Sometimes the voice deepens and hair of male distribution appears. Many remain short in stature and some show other features suggestive of Turner's syndrome such as webbed neck, low hair-line, and cubitus valgus. Our own girl (No. 14) is short with cubitus valgus and shield-like chest, and the initial diagnosis was 'gonadal dysgenesis with large clitoris'. Eunuchoid proportions can also occur.
The four subjects with male phenotype are masculine in body build (though may be short in stature), hairy, possess fair-sized phalluses, and three of them have one gonad in evidence in fused labio-scrotal folds. (One of the female-phenotype group also had a descended gonad—No. 13.) Our own patient (No. 18) possessed short metacarpal bones, many black moles, and deep blue sclerae, features that many be found in Turner's syndrome (Hoffenberg and Jackson, 1957).

Gonadal Features. The most characteristic gonadal pattern seems to be an immature testis on one side with Leydig cells and tubules but no spermatogenesis, and a fibrous streak on the other, which contains ovarian-type stroma and occasionally other primitive elements resembling rete testis or theca cells. Most of the gonads are in the primitive site, but some that contain tubular structures have descended into labioscrotal folds. More complete development has occasionally been
seen in either direction however, with ovarian follicles on the one hand (No. 2 in Table I), and complete spermatogenesis, as in our case (No. 18), on the other. Further variants include: (1) one ovotestis (No. 2), making this subject by definition a *true hermaphrodite*; (2) two cases (No. 3 and 4) with bilateral undifferentiated streak gonads, by definition 'gonadal dysgenesis'; (3) three cases
The 45XO/46XY Mosaic Intersex Syndrome

(No. 7, 10, 16) with testicular tubular structures on both sides, by definition 'male (pseudo) hermaphro-
dite'; (4) in other cases only a single gonad could be
found; (5) finally, there are three cases in which mal-
ignant neoplastic tissue was found in one gonad. As
discussed by Sohval (1964) the exact origin of the
neoplastic cells was difficult to determine.

Chromosomal Features. All patients are chromatin-negative and one or more of their
tissues show 45XO/46XY mosaicism on culture. It
may be presumed that the testicular structures are
determined by the presence of the Y chromo-
some and that the degree of intrauterine masculi-
linization follows from the degree of development of the
foetal testis. Later pubertal virilization must
depend upon the function of adult-type Leydig cells.
Only in our own case, A.M., is complete spermatog-
enesis also present. Published data do not support
the suggestion that the frequency of XY cells in
cultures of the tissues sampled parallels the degrees
of maleness in individual cases.

In Table I, seven cases are summarized, which
appear closely related to the above-described syn-
drome, but do not possess precisely the XO/XY
chromosomal pattern on culture (Conen, Bailey,
Allemang, Thompson, and Ezrin, 1961; Schuster
and Motulsky, 1962; Miles, Luzzatti, Storey, and
Peterson, 1962; Bloise, de Assis, Bottura, and
Ferrari, 1960; Ferguson-Smith and Johnston,
1960; Bottura and Ferrari, 1962; Atkins and Engel,
1962). In one 'typical' case (No. 22) the Y chromo-
some is ultra-small; in one there is triple mosaicism
(XX/XO/XY) with chromatin bodies in some cells;
in a third case there is a small 'X' in addition in the
XY cells, and also bilateral testes. Four others are
not apparent mosaics, being reported as 'XO' only.
Nevertheless, in the three in which laparotomy was
performed testicular tissue was found on one side.
If it be accepted that the Y chromosome is neces-
sary for the gonad to differentiate into a testis then
it would seem a fair presumption that some XY
cells are actually present but are either more
difficult to grow in culture (as in our first case A.I.)
or exist only in tissues that have not been cultivated.

Jost's theory (1953) that the foetal testis produces
a male evocator substance which inhibits female
genital duct differentiation and enhances male
genital development is generally accepted. In
subjects in whom the Y chromosome is not uni-
formly present the virilizing substance may not be
sufficient in amount or activity completely to
inhibit female Müllerian duct development and to
provence full male development. The proportion,
distribution, or activity of the Y chromosome may
vary considerably, thus producing a very diverse
group of sexual anomalies.

Relation to Turner's Syndrome (gonadal
dysgenesis with female body form). The shortness
of stature, combined with primary amenorrhoea and
other evidence of lack of sexual development,
without with minor congenital anomalies similar
to those found in Turner's syndrome are striking.
In most cases a 'streak' gonad on one side also
resembles the gonads of XO Turner's syndrome.
The explanation of the relation between shortness
plus anomalies and XO gonadal dysgenesis is not
clear, but plainly these same skeletal features are
closely connected to the XO/XY constitution as
well as to pure XO.

Summary

Two further cases of the XO/XY chromosome
mosaic intersex syndrome are described, one with
female phenotype, the other with male. The second
patient was producing spermatozoa in his single
descended testis.

Salient features of other cases in the literature
are summarized, showing the wide diversity of
manifestations of this syndrome. The frequency
of shortness of stature and minor congenital anom-
aliies indicates a close connexion with XO gonadal
dysgenesis (Turner's syndrome). Some masculi-
nization, however, always occurs, unlike ordinary
XO gonadal dysgenesis, and presumably the
variable activity of the Y chromosome accounts for
the variable degree of male development.

We wish to thank Dr. R. Hoffenberg, who referred
the patient A.M. to us, and Dr. P. Jacobs for their
advice. Dr. C. Knott-Craig, Dr. S. Kaye, Dr. W. M.
Roberts, and Dr. H. de Groot have been involved on
the surgical side. We are indebted to Dr. L. B. Khan
for the histological reports, and to Mr. B. Todt for the
photographs. Dr. M. J. W. Faed of the Western
General Infirmary, Glasgow, kindly provided the
reports of skin cultures.

The costs of this work were defrayed in part by
grants from The Wellcome Trust and by the South
African Council for Scientific and Industrial Research
to the Endocrine Research Group, of the University of
Cape Town.

References

Appleby, J. I., Gibson, G., Norymberski, J. K., and Stubbs, R. D.
(1955). The determination of 17-hydroxycorticosteroids. Bio-
chem. J., 60, 453.
(XO sex-chromosome constitution) in a human intersex with an
XO mosaicism. ibid., 3, 1430.
Gonadal dysgenesis (Turner’s syndrome) with male phenotype
and XO chromosomal constitution. ibid., 2, 1539.

Addendum

Since this manuscript was written, among other cases of the XO/XY syndrome that have been published is one of a patient resembling the picture of a 'male Turner's syndrome' (Ross, Holland, Kiser, and Douglas, 1965). This 16-year-old boy was short in stature, had cubitus valgus, a short metacarpal and metatarsal, and a descended gonad. Biopsy disclosed an absence of spermatogenesis, however.

Reference