Multipoint mapping of adult onset polycystic kidney disease (PKD1) on chromosome 16

P M Pignatelli, S E Pound, A D Carothers, A M Macnicol, P L Allan, M L Watson, A F Wright

Abstract

Analysis of genetic linkage data in 33 adult onset polycystic kidney (ADPKD) families was carried out using probes for the D16S85, D16S84, and D16S94 loci. The data set of 33 families shows no evidence of genetic heterogeneity since one unlinked family was previously excluded. Two point linkage analysis showed maximum likelihood values of the recombination fraction of 0.07 for ADPKD and D16S85 (lod score 18.78), 0.02 for ADPKD and D16S84 (lod score 7.55), and 0.00 for ADPKD and D16S94 (lod score 6.73). Multipoint analysis showed a maximum likelihood order of tel-D16S85-006-D16S84-002-(PKD1, D16S94)-cen with a multipoint lod score of 32.16. Analysis of rare recombinants lying close to PKD1 gave results consistent with this order.

(J Med Genet 1992;29:638-41)

Adult onset polycystic kidney disease (ADPKD) is an autosomal dominant condition characterised by progressive formation and enlargement of multiple cysts in the kidney and other organs leading to deterioration in renal function and the development of hypertension in middle life. End stage renal disease is a common outcome although renal replacement programmes have improved the prognosis considerably. Premature deaths from the complications of renal failure and rupture of intracranial aneurysms are not uncommon. ADPKD is one of the commonest genetic diseases in man affecting 1 per 1000 of the general population. The pathophysiological basis is not well understood although the earliest changes appear to include hyperplasia of tubular epithelial cells and focal microcyst formation arising in any portion of the nephron from glomerulus to collecting tubules. Abnormalities in tubular basement membrane, sodium pump orientation, and sensitivity to growth factors have recently been identified in ADPKD kidneys and cultured tubular epithelial cells.

Linkage was first shown between ADPKD and D16S85 close to a globin in chromosomal region 16p13 by Reeder et al. This localisation has since been amply confirmed by several other groups. The orientation of the ADPKD locus relative to D16S85, afterwards localised to band 16p13.3, was shown in a multipoint linkage analysis which indicated that the odds in favour of PKD1 lying proximal to D16S85 were >10 000:1 compared with a distal location. This group also showed that the D16S63 and D16S45 loci were located proximal to both PKD1 and D16S85 by a combination of linkage and somatic cell hybrid analyses. Breuning et al. also showed that the disease locus is flanked by D16S80 proximally and D16S85 distally.

A previous analysis of 27 ADPKD families from four countries failed to show evidence of genetic heterogeneity. However, two reports subsequently appeared describing families that failed to show linkage to the α globin region of chromosome 16. Since accurate localisation of the gene first requires a genetically homogeneous sample, we extended our initial study of 10 ADPKD families, included in the study of Reeder et al., to a total of 34 families. The results of this study are described elsewhere and show that 81 to 83% of these families show linkage to this region of chromosome 16. However, only one family (PK53) showed clear evidence of non-linkage to PKD1 and was therefore removed from the data set for the purpose of this multipoint analysis. We now report the results of the analysis of the remaining 33 families using D16S85, D16S84, and D16S94.

Materials and methods

ASCERTAINMENT AND DIAGNOSIS OF FAMILY MEMBERS

Families were ascertained through the Medical Renal Unit, Royal Infirmary of Edinburgh and the Renal Unit, Western Infirmary, Glasgow. Diagnostic criteria included a family history of ADPKD (more than one affected member) and ultrasound findings of two or more cysts greater than 0.5 cm in diameter in one kidney and at least one such cyst in the contralateral kidney. Pedigrees were drawn up after interviews with patients and were checked against the centralised Register for Births, Marriages, and Deaths for Scotland. Ethical approval was obtained and, after obtaining informed consent, 30 to 50 ml EDTA anticoagulated blood were drawn and frozen at −70°C before DNA extraction. Thirty-four probands and 311 family members were initially ascertained and their relatives sampled for biochemical and DNA analysis and examined clinically as described previously, after which ultrasound examinations were arranged and carried out by experienced sonologists, one in each centre.

A previous study of linkage heterogeneity identified one family (PK53) contributing disproportionately to the observed heterogeneity and so was excluded from this study. This family showed a conditional probability of 0.003 of being linked to the D16S85,
D16S84, and D16S94 loci. None of the other families showed good evidence of non-linkage to this region, so this set of 33 families was used in the study.

DNA EXTRACTION AND ANALYSIS
DNA was extracted by the method of Kunkel et al.18 The following loci were used to type all family members.

1) D16S85 (3'HVR) is a hypervariable locus described by Jarman et al21 and located in 16p13.3, which detects multiple alleles with several restriction enzymes. DNA samples were digested with the restriction enzyme PvuII and allele frequencies were each set at 0.1.

2) D16S84 (pCMM65) was isolated by Nakanumura et al.15 and detects two alleles of size 3.5 kb (A1) and 2.1 kb (A2) with frequencies of 0.40 and 0.60 with the enzyme PvuII. It is localised to chromosomal region 16p.

3) D16S94 (pK5S5B) was isolated by Hyland et al.22 and detects alleles of 1.6 kb (A1) and 1.3 kb (A2) with the enzymeMspI with frequencies of 0.55 and 0.45. It is localised to chromosomal region 16p13.3.

4) D16S45 (CRI-090) was isolated by Donis-Keller et al.20 and detects two alleles (20 kb and 13 kb) with frequencies of 0.47 and 0.53 with EcoRI. This probe was only used to probe families containing key recombinants. It is localised to chromosomal region 16p-ter-p13.

Probes were used without purification of inserts and labelled with 32P-dCTP by random priming.21 Unincorporated counts were separated by gel filtration. DNA from the patients was digested to completion with the above enzymes and separated by electrophoresis on 0.8% agarose gels in 1 x TBE buffer. Transfers were carried out by the method of Southern23 using nylon (Nytran) filters. Filters were prehybridised for at least four hours in 5 x Denhardt’s solution/4 x SSC/10% dextran sulphate/0.1% sodium pyrophosphate/1% sodium dodecylsulphate (SDS)/0.1 mg ml⁻¹ denatured salmon sperm DNA. Filters were then hybridised in the same mixture containing 1 to 2 x 10⁶ cpm ml⁻¹ of labelled probe (2.5 ng ml⁻¹). After overnight hybridisation at 68°C, filters were washed in 2 x SSC/1% SDS down to a final stringency of 0.1 x SSC/1% SDS at 68°C. Filters were used to expose Kodak XAR-5 films in cassettes containing double intensifier screens for one to 14 days at −70°C.

LINKAGE ANALYSIS
Linkage was analysed using the LINKAGE program package version 5.03.24 The ADPKD gene frequency was set at 0.0005 and male and female mutation rates assumed to be equal at 5 x 10⁻⁶ per locus per gamete. The female:male recombination ratio was assumed to be constant and was found to maximise the likelihood at a ratio of 0:2. This value was used for LINKMAP runs. MLINK was unable to support a fixed ratio of recombination in the two sexes, so sex averaged values were obtained. Two point linkage analyses were obtained using the MLINK subroutine. Multipoint analyses were run using LINKMAP with a fixed order of marker loci as follows: D16S85-0.06-D16S84-0.02-D16S94. The probabilities of ultrasonographic detection in gene carriers were assumed to be 0.22, 0.66, 0.86, and 0.95 during the first four decades of life and were taken to be 1:00 after the age of 40.24

RESULTS
TWO POINT LINKAGE ANALYSES
The results of two point linkage analyses are shown in the table. The maximum likelihood value of the recombination fraction (sex averaged) was found to be 0.07 at a lod score of 18.78 for PKDI-D16S85. The corresponding values of the recombination fractions were 0.02 at a lod score of 7.55 for PKDI-D16S84 and 0.00 at a lod score of 6.73 for PKDI-D16S94. All three loci show close linkage to PKDI and highly significant lod scores. No recombination was found with D16S94 and only a single definite recombinant with D16S84.

MULTIPOINT LINKAGE ANALYSIS
The results of the multipoint analysis is shown in the figure. In a four point analysis with PKDI, D16S85, D16S84, and D16S94, the maximum likelihood is found to occur at the location D16S85-0.06-D16S84-0.02-(PKDI, D16S94) - cen (order 1) at a peak lod score of 32.16. Since no definite recombination was observed between PKDI and D16S94, the order of these two loci cannot be determined. This result is consistent with the presence of a single triply informative meiosis in an affected member of family PK52 which is recombinant with both D16S85 and D16S84, although the family has not yet been found to be informative for D16S94 or other proximal markers. Exchange of flanking markers has therefore yet to be shown. However, in the data set as a whole the likelihood of the order D16S85-0.04-PKDI-0.02-D16S84-0.02-D16S94-cen (order 2) is only 2 6 times lower than order 1, with PKDI proximal to D16S84. However, order 1 is at least 2.7 x 10⁵ times more likely than with PKDI distal to D16S85.

A total of 20 recombinants out of 226 informative meioses has been identified in the 33 APKD families using the D16S85, D16S84, D16S94, and D16S45 loci. Only 12 of these are multiply informative and therefore provide information on the localisation of the PKDI locus. Five out of eighteen D16S85 recombinants are also informative for D16S84, four of which are non-recombinant with D16S84, supporting the proposal that this locus is closer to PKDI than D16S85.25 Five out of eighteen D16S85 recombinants are informative for D16S94, each of which is non-recombinant with APKD, consistent with the hypothesis that PKDI lies distal or close to D16S94.
The results of two point linkage analyses of ADPKD and the D16S85, D16S84, and D16S94 loci. Recombination fractions and the corresponding lod scores are shown. The maximum likelihood values of the recombination fractions (θmax) and lod scores (Zmax) are indicated.

<table>
<thead>
<tr>
<th>Locus</th>
<th>0-00</th>
<th>0-01</th>
<th>0-05</th>
<th>0-10</th>
<th>0-20</th>
<th>0-30</th>
<th>0-40</th>
<th>θmax</th>
<th>Zmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>D16S85 (3'HVR)</td>
<td>2.45</td>
<td>14.82</td>
<td>18.62</td>
<td>18.37</td>
<td>14.53</td>
<td>9.02</td>
<td>3.27</td>
<td>0.07</td>
<td>18.78</td>
</tr>
<tr>
<td>D16S84 (CM655)</td>
<td>6.14</td>
<td>7.42</td>
<td>7.39</td>
<td>6.68</td>
<td>4.75</td>
<td>2.63</td>
<td>0.76</td>
<td>0.02</td>
<td>7.55</td>
</tr>
<tr>
<td>D16S94 (VK5B)</td>
<td>6.73</td>
<td>6.56</td>
<td>5.89</td>
<td>5.03</td>
<td>3.31</td>
<td>1.70</td>
<td>0.48</td>
<td>0.00</td>
<td>6.73</td>
</tr>
</tbody>
</table>

Discussion

Previous multipoint analyses of the PKD1 locus have been described by Reeder et al., Germino et al., and Breuning et al. A very substantial body of evidence supports the localisation of PKD1 proximal to D16S85, the most distal marker known on chromosome 16, and distal to the D16S45, D16S63, and D16S80 loci. Further refinement of the map of this region has come from the combined use of linkage and human-rat hybrid cell lines which have distinguished four subregions by means of 23HA (GM2324), N-OH1, and CY14 breakpoints. These regions separate the most important polymorphic loci into the following four groups, extending distally: (1) D16S45, D16S63, D16S80 (proximal to 23HA), (2) D16S94, D16S125 (proximal to N-OH1, distal to 23HA), (3) D16S84, D16S25 (proximal to CY14, distal to N-OH1), (4) D16S83, D16S21, D16S85 (distal to CY14).

The genetic relationship of PKD1 with loci within groups 2 and 3 is less clear, however. Most of these loci show few if any recombinations with PKD1, which on the one hand supports the view that they lie closer to the gene than those in groups 1 and 4, but on the other hand makes ordering difficult. In the absence of ADPKD patients showing chromosomal rearrangements, the genetic definition of closely linked flanking markers is an essential premise to successfully localising the gene by physical means. Initially, no recombinants were identified with D16S84, although at least one has since been reported. Similarly, at least one recombinant has been reported with D16S125, which, together with the above, is consistent with a localisation for PKD1 between D16S84 and D16S125, an area of less than 750 kb as determined by pulsed field gel electrophoresis (PFGE) mapping. However, several potential pitfalls exist which can lead to a misleading genetic assignment, so that it is important to accumulate as much genetic evidence as possible. Firstly, genetic heterogeneity is now known to exist in ADPKD so that genetic mapping should be carried out as far as possible on a genetically homogeneous population. We have attempted to do this by first carrying out a heterogeneity study and then by removal of unlinked families from further analysis. Secondly, false positive and false negative diagnoses can lead to misinterpretation of results. Thirdly, double recombinants, although very rare in such small genetic distances, can occur and may be mimicked by gene conversion events. Fourthly, mistyping can occur, so that it is important that each apparent recombinant is checked, preferably by an independent laboratory. Finally, non-paternity can arise and lead to erroneous interpretation of results, so that this should ideally be checked by genetic fingerprinting.

The results presented in this study confirm the tight genetic linkage of D16S85 in region 3 which shows only a single definite recombinant with PDK1 (θmax = 0.02, Zmax = 7.55), similarly with D16S94 in region 2, which shows no definite recombinant with PDK1 (θmax = 0.00, Zmax = 6.73). Multipoint analysis showed the most likely order to be: tel-D16S85-D16S84-(PKD1, D16S95)-cen which gave a multipoint lod score of 32.16. A single recombinant with D16S84 was also recombinant for D16S85, arguing in favour of a location for PKD1 proximal to both these loci. The recombinant subject is unequivocally affected, so that a false positive diagnosis seems highly unlikely, but the family has so far been uninformative for proximal markers such as D16S94. It will therefore be important to show that exchange of flanking markers has occurred in this instance, since the family is not large enough to be unequivocally linked to PKD1. Fine mapping these and other rare recombinants in regions 2 and 3, using new polymorphisms identified from these locations will help to confirm the location of PKD1 and to narrow down the area of search by physical mapping methods.

We would like to acknowledge the generous support of The Wellcome Trust. We would like to thank Drs D R Higgs, Y Nakamura, and...
V J Hyland for the use of the D16S85, D16S84, and D16S94 probes. We are grateful to
Norman Davidson and staff for the artwork, and to Mrs Rhona De Mey for checking pedi-
grees against the centralised register of births, marriages, and deaths. We would like to thank
Drs J D Briggs and B Junor for their coopera-
tion and for access to their patients.

1 Chester AC, Argy WP Jr, Rakowski TA, Schreiner GE.
2 Segal AJ, Spataro RF, Barbaric J. Adult polycystic kidney
3 Dalgaard OZ. Polycystic disease of the kidneys: a follow-up
4 Friedman J. Cystic diseases of the kidney. In: Emsley AEH,
Rimoin DL, eds. Principles and practice of medical gen-
etics. Volume I. Edinburgh: Churchill Livingstone,
5 Wilson PD, Sherwood AG, Palla K, Du J, Watson R,
Norman JT. Cellular and molecular mechanisms of cyst
formation in human autosomal dominant polycystic kidney
polymorphic DNA marker linked to adult polycystic kidney
4.
7 Watson ML, Wright AF, Macnicol AM, et al. Studies of
genetic linkage between adult polycystic kidney disease
and three markers on chromosome 16. J Med Genet
8 Lazarou LP, Davies F, Sarfarazi M, Coles GA, Harper PS.
Adult polycystic kidney disease and linked RFLPs at the
alpha-globin locus: a genetic study in the South Wales
9 Breuning MH, Reeders ST, Brunner H, et al. Improved
eyarly diagnosis of adult polycystic kidney disease with
10 Breuning MH, Madan K, Verjaal M, Wissen JT, Khan M,
Pearson P. Human alpha-globin maps to pter-p13.3 in
11 Reeders ST, Keith T, Green P, et al. Regional localization
of the autosomal dominant polycystic kidney disease
12 Reeders ST, Breuning MH, Ryynanen MA. A study of
genetic linkage heterogeneity in adult polycystic kidney
locus for autosomal dominant polycystic kidney disease.
14 Kimberling WJ, Fain PR, Kenyon JB, Goldgar D,
Sujansky E, Gabow PA. Linkage heterogeneity of auto-
15 Wright AF, Carothers AD, Pignatelli PM, et al. A study of
genetic linkage heterogeneity in 34 adult-onset polycystic
16 Kunkel LM, Tantravahi U, Eisenhard M, Latt SA. Re-
gional localization on the human X of DNA segments
cloned from flow sorted chromosomes. Nucleic Acids Res
17 Jarman AP, Nichols RD, Weatherall DJ, Clegg JB, Higgs
DR. Molecular characterization of a hypervariable region
downstream of the alpha-globin gene cluster. EMBO J
18 Nakamura Y, Martin C, Krapcho K, et al. Isolation and
mapping of a polymorphic DNA sequence (pCMM65) on
chromosome 16 (D16S84). Nucleic Acids Res 1988;
16:3122.
19 Hyland VJ, Suthers GK, Friend K, et al. Probe, VKSB, is
located in the same interval as the autosomal dominant
adult polycystic kidney disease locus, PKD1. Hum Genet
21 Feinberg AP, Vogelstein B. A technique for radiolabelling
DNA restriction endonuclease fragments to high specific
22 Southern EM. Detection of specific sequences among DNA
fragments separated by gel electrophoresis. J Mol Biol
23 Lattrop GM, Laubert JM, Julien C, Ort J. Strategies for
multilocus linkage analysis in humans. Proc Natl Acad Sci
onset and ultrasonographic detection of adult polycys-
tic kidney disease – data for genetic counseling. Am J
locus which shows no genetic recombination with the
autosomal dominant polycystic kidney disease gene on
26 Breuning MH, Sniiderman FCM, Brunner H, et al. Map of
16 polymorphic loci on the short arm of chromosome 16
close to the polycystic kidney disease gene (PKD1). J Med
27 Reeders ST. The search for the PKD1 gene on chromosome
16. Paper delivered at EBC Concerted Action Workshop
on Polycystic Kidney Disease, Paris, 8 June 1990.
28 Gilberger TJ, Somlo S, Germino GG, Weinstat-Saslow
D, Reeders ST. CpG island in the region of an autosomal
dominant polycystic kidney disease locus defines the 5’
end of a gene encoding a purative protein channel. Proc