LETTERS TO
THE EDITOR

A new form of infantile spinal muscular atrophy

We read with great interest the article by Borochowitz et al describing a possible new form of infantile spinal muscular atrophy (SMA) characterised by congenital contractures, multiple bone fractures, and early death.

A few years ago we performed a detailed study of the skeletal changes in the long bones in 11 infants with neuromuscular disease.

SMA was diagnosed at necropsy in six of these infants and these infants were clinically similar to the two patients reported by Borochowitz et al. The infants with SMA in our study were from four families without parental consanguinity. The first three cases were consecutive offspring (two females and one male) of healthy parents, which provides additional support for the suggestion of Borochowitz et al that this is an autosomal recessive disorder. The consistent radiographic findings of each infant with neuromuscular disease in our study were thin, hypomineralised, and elongated long bones. In addition, all infants with SMA showed multiple diaphyseal or metaphyseal fractures or both, primarily involving the long bones of the upper extremities. A morphometric evaluation of the long bones showed a more pronounced decrease in periosteal diameter, cortical thickness, and cortical area in the patients with SMA as compared to infants with other types of neuromuscular disease, for example, congenital myotonic dystrophy. Since the shape and growth of bones are determined by an interactive process between the intrinsic properties of bone and biomechanical forces, severe fetal immobilization can lead to hypoplastic bones and fragility. Moreover, stiff joints may play a role in the genesis of the fractures, owing to diminished absorption of the mechanical forces applied to the fragile bones during delivery and postnatal handling of the newborn. Although in our experience joint contractures and bone fractures are non-specific findings, since they are related to the duration and severity of the intrauterine akesis, their presence in infants with SMA probably implies a severe disorder of intrauterine onset. This assumption is further supported by the fact that many of the infants studied also had other abnormalities associated with fetal akesis, such as polyhydramnios, intrauterine growth retardation, microcephaly, and pulmonar hypoplasia. In conclusion, our previous studies support the suggestion of Borochowitz et al of a new form of infantile SMA distinct from the common classical form of SMA I.

MASA syndrome (a form of complicated spastic paraplegia) and X linked hydrocephalus: variable expression of the same mutation at Xq28?

Call for families

Spastic paraplegia is a common autosomal dominant disorder. In the complicated form, it may be present in combination with mental retardation or ophthalmologic abnormalities or both. In the X linked recessive ‘MASA’ syndrome, the Spastic paraplegia is combined with Mental retardation, Aphasia (late speech development), and Adducted thumbs. We had the opportunity to examine two families where several males had either MASA syndrome or congenital hydrocephalus. Extensive data on both families have been previously published in this journal.

Since the original description of MASA syndrome in 1974, four other families have been reported. Our family I was the first reported family that included males suffering from MASA syndrome, named as such, and X linked hydrocephalus (XLH). In this family the abnormality seen on CT scan of the brain was an important finding: the lateral ventricles were grossly enlarged and irregularly surrounded by brain tissue. In families with XLH, surviving male relatives may present with (non-specific) mental retardation with or without spastic paraplegia. The clinical findings of males with MASA syndrome are compared with mentally retarded males in families with XLH in the table. Although the clinical descriptions are not always extensive there seems to be an obvious clinical similarity.

Linkage analysis places the locus of both MASA syndrome and X linked congenital hydrocephalus on Xq28. Thus, clinical data and DNA linkage analysis support the hypothesis that MASA syndrome and X linked hydrocephalus are variable expressions of the same mutation at Xq28.

We would like to make a call for families with (possible) MASA syndrome, with or without male relatives with XLH, for further delineation of the clinical spectrum and understanding of the genetic basis. With a diagnosis in hitherto undiagnosed mentally retarded males it will be possible to provide adequate genetic counselling to the families. Female relatives at risk may benefit from the possibilities of prenatal diagnosis.

C SCHRANDER-STUMPEL
Department of Clinical Genetics,
University of Limburg,
PO Box 1475,
6201 BL Maastricht, The Netherlands.

J P FRYNs
J CASSIMAN
E LEGRUS
A SPAEPEN
Centre for Human Genetics,
University of Leuven,
Herestraat 49,
B300 Leuven, Belgium.

C J HÖWEKER
Department of Neurology,
University of Limburg,
6200 AZ Maastricht,
The Netherlands.

Clinical comparison between male patients with MASA syndrome and mentally retarded males from families with X linked hydrocephalus.

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>MASA males</th>
<th>XLH males</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 12)</td>
<td>(n = 20)</td>
</tr>
<tr>
<td>Head circumference (centile)</td>
<td>100th-98th</td>
<td>100th > 98th</td>
</tr>
<tr>
<td>Mental development (IQ)</td>
<td>40-75</td>
<td>20-50</td>
</tr>
<tr>
<td>Adducted thumbs</td>
<td>17/17</td>
<td>19/20</td>
</tr>
<tr>
<td>Spastic paraplegia (hyperreflexia)</td>
<td>2/3</td>
<td>5/7</td>
</tr>
</tbody>
</table>