MEDICAL GENETICS: ADVANCES IN BRIEF

Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression

The involvement of chromosome 15q11-13 mutations in two clinically distinct syndromes, those of Angelman (AS) and Prader-Willi (PWS), has provided several new insights in human genetics over the past few years, and represents perhaps the best example of imprinting effects in human disease. Most cases of PWS result from de novo paternal deletion or maternal uniparental disomy; about 60% of AS is caused by de novo maternal deletion, with a small contribution from paternal uniparental disomy. In the remaining ~40% of AS, however, new de novo deletions have been identified that interact with the maternal haplotype. These include new deletions involving maternal uniparental disomy as well as new deletions of the maternal chromosome. This identification of this group is particularly important because the recurrence risk may be higher, approaching 50%. Wagstaff et al. now describe a very instructive family in which three clinically normal siblings have between them borne four offspring with AS, together with three healthy children. A fourth sibling has had two healthy children. The authors show that the four affected children all share a 15q11-13 haplotype inherited from the maternal grandfather; the unaffected children have inherited a grandmaternal haplotype, or (in a child of the fourth sister) the opposite haplotype from the maternal grandfather. As well as serving as a beautiful example of imprinting (the mutation must be transmitted through the female to be manifest), the family provides further evidence that non-deletion AS may be linked to 15q11-13 and that the locus is distinct from that for PWS.

ANDREW WILKIE
A cDNA encoding a PRB-binding protein with properties of the transcription factor E2F

Expression cloning of a cDNA encoding a retinoblastoma binding protein with E2F-like properties

Recent evidence suggests that the retinoblastoma protein (pRB) plays an important role in the negative regulation of cell proliferation. However, details of how pRB exerts its functions have not been completely elucidated. A specific domain (‘pocket’) in pRB is a major target for both transforming viral oncoproteins and naturally occurring mutations, indicating functional significance for this region. Several cellular proteins have been identified that interact with the pRB pocket. Of these, the transcription factor E2F is most directly implicated in growth control. Both the papers report the cloning and characterisation of a cDNA encoding a polypeptide (RB3P/ RBAP-1) with properties of E2F. RB3P/RBAP-1 copurified with E2F and bound to pRB both in vivo and in vitro. The pRB binding was completed by viral oncoproteins known to bind to the pRB pocket. The expression of RB3P/RBAP-1 was shown to be cell cycle regulated. Like E2F, RB3P/RBAP-1 showed binding to adenovirus E4 protein and contains a transactivating domain. These findings suggest that RB3P/RBAP-1 is either E2F or a member of a family of E2F-like proteins. The availability of a cDNA encoding E2F or E2F-like protein should enable further investigation of the mechanisms involved in cell cycle regulation by pRB and E2F.

N S THAKKER
Antenatal maternal serum screening for Down's syndrome: results of a demonstration project

The authors set out to assess how maternal serum screening for Down's syndrome worked in practice in hospital and community antenatal clinics; 12,603 women of all ages with singleton pregnancies were offered screening using the markers a fetoprotein, unconjugated oestriol, and human chorionic gonadotrophin, and combining results with maternal age to give an estimate of the risk of the fetus having Down's syndrome at term. Women with a risk estimate of 1 in 250 or greater were classified as screen positive and offered amniocentesis. Uptake of screening was 74%, with a detection rate for Down's syndrome of 4% (12/25), and false positive rate 4.1%, consistent with results expected from previous observational studies. Some cases may have been missed because ultrasound confirmation of gestational age was only routinely performed in screen positive cases, and the composite risk is dependent on accurate estimation of this variable. They suggest that if ultrasound confirmation is to be used it should be performed for all those who accept screening. Approximately a quarter of those who accepted serum screening finding initially declined amniocentesis when found to be screen positive and I think the reasons for this would be worthy of further study. Antenatal maternal serum screening should now become available throughout Britain.

ANDREW NORMAN
Nucleoside triphosphates are required to open the CFTR chloride channel

The majority of the mutations causing CF occur within the two nucleotide binding domains (NBD1 and NBD2). Although some of these NBD mutations are normally processed, they fail to generate the Cl- channel activity suggesting an important role for the NBDs in the normal functioning of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity. This paper describes the effect of ATP on Cl- channel activity in cell free membrane patches derived from two different cell types expressing normal or mutant CFTR. Hydrolysis of ATP was directly required to open PKA phosphorylated Cl- channels. The effect was not abolished by the ATP synthase inhibitor oligomycin, but ATP was insensitive to open CFTR. Furthermore, ATP reversibly opened Cl- channel in cells expressing mutant NBD2 suggesting that the synthesis of ATP by NBD2 was sufficient to open CFTR. These findings explain why CF associated mutations in the NBDs block Cl- channel activity and are interesting because of the disproportionately greater incidence of the mutations in the NBD1.