Partial trisomy for 5q and monosomy for 12p in a liveborn child as a result of a complex five breakpoint chromosome rearrangement in a parent


Abstract
A balanced complex chromosome rearrangement (CCR) involving four chromosomes is very rare and may lead to different types of aneuploid germ cells. We report a liveborn child with multiple congenital anomalies and an apparently balanced translocation, t(11;12). High resolution chromosome analysis in the mother showed a CCR involving chromosomes 5, 11, 12, and 16. In situ hybridisation showed that this CCR was the result of a five break rearrangement, and that the derivative chromosome 12 consisted of parts of chromosomes 5, 11, and 12. From this it could be deduced that the karyotype of the child was not balanced, but resulted in partial trisomy for 5q and partial monosomy for 12p. The clinical findings in the child were compatible with partial trisomy for 5q.

Balanced reciprocal translocations between two chromosomes are relatively common, occurring in about 1 in 600 newborns. However, balanced complex chromosome rearrangements (CCR) involving four or more breakpoints are very rare. A balanced CCR can lead to various forms of aneuploidy during meiosis in the carrier. Such genetic imbalances will often result in fetal wastage or sometimes even lead to infertility. However, on a few occasions, such an imbalance may give rise to a liveborn child with multiple congenital anomalies.

We report a child with partial duplication of 5q and deletion of 12p as a result of a very complex rearrangement involving chromosomes 5, 11, 12, and 16 in the mother.

Case report
The male proband was born in 1990, the second child of healthy, non-consanguineous, Dutch parents. The pregnancy was complicated by a haemorrhage in the fourth month and growth retardation. At 36 weeks’ gestation he was born spontaneously, with a birth weight of 1610 g (< 3rd centile) and head circumference of 28-5 cm (< 3rd centile). Multiple congenital anomalies were noted, including microcephaly with closure of the coronary and sagittal suture, cleft palate, hypertelorism, high nasal bridge, long, simple philtrum, thin upper lip, small mouth, low set, dysmorphic ears, small palpebral fissures, hypoplasias, small scrotum, oesophageal atresia, a ventricular septal defect, and a large atrial septal defect (fig 1).

On the second day cardiac and respiratory distress occurred and the child died on the fourth day. Necropsy was not permitted. There is no cell line available from the patient.

CYTOGENETICS
Initial routine chromosome analysis on cultured peripheral blood lymphocytes of the proband showed an abnormal male karyotype. In first instance it was interpreted as a balanced translocation between chromosomes 11 and 12: 46,XY,t(11;12)(p15;q12). We were not able to perform high resolution chromosome analysis because of the early death of the infant, so an unbalanced chromosome pattern could not be excluded. Cytogenetic investigation of both parents showed a normal male karyotype in the father, whereas in all cells of

Figure 1 The proband shortly after his death.
the mother a very complex, balanced rearrangement involving four different chromosomes (5, 11, 12, 16) was encountered. Routine analysis after G banding with trypsin-Giemsa indicated a four breakpoint rearrangement (5q34;11p15;12q12;16p11.2).

High resolution chromosome analysis with the use of a trypsin-basic fuchsin technique showed that the distal part of the short arm of the derivative chromosome 12 slightly differed from its normal counterpart. A double in situ hybridisation was performed with an alphoid pericentromeric probe from chromosome 12 combined with the total DNA from a human*hamster hybrid cell line with an isochromosome 12p as the only human component. This experiment clearly indicated that yet another translocation had occurred. The distal part of the short arm of chromosome 12 had been translocated to the aberrant chromosome 16, while the distal part of 11p must have been translocated to the aberrant chromosome 12 (fig 2). With this additional information the following complex karyotype with a five breakpoint translocation could be constructed for the mother: 46,XX,t(5;11,12;16)(5pter→5q34::16pter→16q12::11pter→11q12::12q12→12pter;5qter→5q34::12q12→12p13.1::11p15.3→11pter;16qter→16p11.2::11pter→12pter) (fig 3). This means that the karyotype of the proband becomes 46,XY−11,−12,+der(11)t(11;12)(p15.3;q12),+der(12)t(5;11;12)(5pter→5q34::12q12→12p13.1::11p15.3→11pter), resulting in trisomy for the distal part of 5q and monosomy for the distal part of 12p.

Chromosome analysis in the healthy older brother of our patient and both parents of the mother showed normal karyotypes.

Discussion

For delineating complex chromosomal translocations, high resolution chromosome analysis is indispensable but sometimes even insufficient. In these situations in situ hybridisation or chromosome painting can be complementary. In our patient we were able to determine the precise chromosome pattern only after extensive chromosome analysis in combination with in situ hybridisation on peripheral lymphocytes of the mother.

She carried a de novo, balanced, complex chromosome rearrangement involving four chromosomes and including five translocation breakpoints. One of the derivative chromosomes (der(12)) appeared to be constructed of parts of three different chromosomes. The proband inherited the der(12) and der(11) from his mother.

The clinical findings in our patient are compatible with the symptoms found in other patients with partial trisomy for the distal part of 5q, especially the facial dysmorphism (fig 1). Thirteen cases of trisomy for the distal part of 5q have been published. The patient described by Zabel et al was trisomic for almost the same part of chromosome 5q as our patient. The facial dysmorphism of this child was also very similar including microcephaly,
Partial trisomy for 5q and monosomy for 12p in a liveborn child as a result of a complex five breakpoint chromosome rearrangement in a parent


