De novo interstitial deletion of lp (pter→p34.1::p32.3→qter)

Makoto Yoshino, Yoriko Watanabe, Naoki Harada, Kyoko Abe

Abstract
We report a case of a 9 month old girl with a de novo interstitial deletion of lp, karyotype 46,XX, del(1)(pter→p34.1::p32.3→qter). She had dysmorphic features including upward slanting palpebral fissures, a bulbous nose, a long philtrum, low set malformed ears, a short neck, hypoplastic nails on both index fingers, widened interdigital spaces between the toes, dilated lateral ventricles, right hydronephrosis, a dilated right ureter, mental and motor developmental delay, and generalised hypotonia.

Chromosome abnormalities involving lp are rare. In particular, partial monosomy for lp, not associated with a translocation or ring chromosome, has been described to date in only eight patients.1-8 We report a case of a girl with multiple anomalies and an interstitial deletion of lp, which is the smallest of these deletions reported so far.

Case report
The patient, a 9 month old female infant, was born to a 21 year old mother and 31 year old father after an uneventful 40 week pregnancy with a birth weight of 3110 g.

When she was first seen by us at the age of 27 days, she showed the following abnormalities: prolonged jaundice, two strawberry haemangiomas on the parietal area of the scalp, a flat occiput, mildly dilated lateral ventricles and low density areas in the white matter shown by computed tomography, protuberant orbital areas with epicanthus, short and upward slanting palpebral fissures, a bulbous nose with anteverted nostrils, a long philtrum, a beaked upper lip, a high arched and narrow palate, low set, malformed, and prominent ears, a short neck, widely spaced nipples, hypoplastic nails on both index fingers, long hallucae, wide interdigital spaces between the first and second and the fourth and fifth toes,

Department of Pediatrics and Child Health, Kurume University School of Medicine, Asahimachi 67, Kurume 830, Japan.
M Yoshino, Y Watanabe

Department of Human Genetics, Nagasaki University School of Medicine, Nagasaki 852, Japan.
N Harada, K Abe

Cytogenetics Research Department, Kyushu Medical Science Nagasaki Laboratory, Nagasaki 852, Japan.
N Harada, K Abe
Correspondence to Dr Yoshino.

Received for publication 6 December 1990.
Accepted for publication 31 December 1990.

High resolution GTG banded chromosome 1. Black arrows show breakpoints and white arrow shows a rejoining point.
right hydronephrosis, and a dilated right ureter. Her developmental milestones were generally delayed; she had gained head control by 4 months, but could not roll over, sit, or stand until 11 months, and started to walk at the age of 22 months.

Cytogenetic findings and discussion

Cytogenetic analysis with high resolution GTG banding showed the karyotype 46,XX,del(1)(p32.3→q34.1::p32.3→qter) de novo (figure), and AluI banding indicated that the origin of the de novo deletion was paternal.

One patient has been reported with intestinal deletion and another with terminal deletion of 1p whose deleted segments showed partial overlap with the deleted region in our patient. The present patient shared some clinical features with these two reported patients, including a flat occiput, low set ears, upward slanting palpebral fissures, short neck and developmental delay (table). At least seven other patients with interstitial deletion or terminal deletion of this chromosome have been reported to date. However, the deleted region in our patient did not show any overlap with the deleted bands of any of these patients.

The size of the deletion in our patient was the smallest of the eight reported deletions of 1p. The small number of reported cases of 1p deletion may suggest the existence of genes essential for life being located on this chromosome.

An EB virus transformed lymphoblastoid cell line from this patient is available at the Department of Human Genetics, Nagasaki University School of Medicine (No NG–365).

We thank Drs. Shigeru Karukaya and Fumio Yamashita (Department of Pediatrics and Child Health, Kurume University) and Dr. Norio Niikawa (Department of Human Genetics, Nagasaki University) for their encouragement.