LETTERS TO THE EDITOR

Cornelia de Lange syndrome with ring chromosome 3

The report of Lakshminarayana and Nallasivam1 concerning a patient with ring chromosome 3 and Cornelia de Lange syndrome recalls an earlier controversy. We had followed the cue of Falek et al2 in suggesting a relationship between chromosome 3 and the syndrome of Brachmann and de Lange.3 Francke and Opitz4 emphasised the superficiality of this resemblance, and personal experience with five cases of dup(3q) syndrome5 has documented several differences between the two malformation patterns. As with dup(3q) patients, the photograph published by Lakshminarayana and Nallasivam5 resembles the gestalt of Cornelia de Lange syndrome but has atypical manifestations. Absent are the grim facies and micromelia, while the presence of a dilated cisterna magna, as pointed out by the authors, is unusual. Their case is also very different from our ring 3 patient6 and it is unfortunate that the location and variability of the breakpoints were not specified.1 Begging for examination now is the parental origin of 3q regions in 3q partial trisomy/monosomy and Cornelia de Lange syndrome. Could the quantity and imprinting7 of unbalanced material explain their similarities and differences?

GOLDER N WILSON
Division of Pediatric Genetics and Metabolism,
University of Texas Southwestern Medical Center,
5323 Harry Hines Boulevard,
Dallas, Texas 75235–9063, USA.


Linear skin defects and congenital microphthalmia: a new syndrome at Xp22.2

We read with interest the two recent articles describing a new syndrome consisting of irregular linear areas of erythematous skin hypoplasia involving the head and neck, with eye findings that included microphthalmia, corneal opacities, and orbital cysts.1 2 Cyto genetic analysis in two cases showed a translocation between chromosomes X and Y, with breakpoints at Xp22.3 and Yq11.2.3 A third case had a terminal deletion of the X chromosome from Xp22.2–pter.4 Parental studies were normal.

Four years ago we examined a newborn female with identical skin findings of the head and neck, bilateral microphthalmia, and corneal opacities, whom we believe, in retrospect, had the same syndrome. She also had a terminal deletion of the X chromosome, with the breakpoint at Xp22.2. We report this case to present additional findings.

Case 1. This female was born at 36 weeks' gestation after an uncomplicated pregnancy. Delivery was by caesarian section because of fetal distress. Copious amounts of amniotic fluid were noted. Birth weight was 2200 g (10th to 25th centile). At birth, the skin and eye abnormalities noted above were seen. There was a high forehead, frontal upsweep of the hair with bilateral parietal hair whorls, hypertelorism, prominence of the nasal root, low set ears with a prominent antibelix and underdeveloped superior portion of the helix, flat philtrum, and micrognathia (fig 1). A left diaphragmatic hernia caused severe respiratory distress which ultimately led to death, after unsuccessful surgical repair. Necropsy showed absence of the septum pel lucidum with an ectopic area of grey and white matter, 1·5 cm diameter, in the right cerebral hemisphere, which bulged superiorly and medially and displaced downwards to the corpus callosum.

Case 2. The mother of this female is a healthy 23 year old gravida 2, para 1, SA 1 woman of normal intelligence.

Figure 1 Case 1. Note the irregular linear areas of erythematous skin hypoplasia involving the head and neck.