A single lymphocyte culture for fragile X induction and prometaphase chromosome analysis

M J Griffiths, M C Strachan

Abstract
A single lymphocyte culture system is described which produces both reliable fragile X expression and elongated chromosomes for prometaphase analysis. This system, which is based on that described by Wheater and Roberts in 1987, involves the deoxycytidine release of a thymidine block. Eight fragile X positive subjects had an average expression level of 26%, with a range of 12% to 45%, using the thymidine/deoxycytidine protocol. This was comparable to the levels obtained in parallel cultures treated with thymidine alone or fluorodeoxyuridine.

Several techniques have been developed to produce elongated or prometaphase chromosomes for cytogenetic analysis, and in the last few years the use of an excess thymidine (300 mg/l) block to induce synchrony in lymphocyte cultures has become one of the standard techniques.12 Thymidine is added the day before harvest to block the cell cycle at S phase and the block is released the following morning either by removal of the thymidine or addition of deoxycytidine.3

Sutherland et al4 showed that similar levels of thymidine can be used to induce expression of some chromosome fragile sites, in particular fra(X)(q27), the fragile site associated with Martin–Bell syndrome.5

The ability to use a single culture system to produce both reliable fragile X expression and elongated chromosomes would clearly be of advantage to a diagnostic cytogenetic laboratory.

Over a period of one year we have been using cultures treated with excess thymidine or fluorodeoxyuridine6 for the induction of fragile sites and a third culture treated with a thymidine block released by deoxycytidine to produce elongated chromosomes from appropriate diagnostic referrals to the laboratory. The levels of fragile X expression induced by all three culture regimens have been compared.

Methods
(A) THYMIDINE INDUCTION OF FRAGILE SITES (THY)
Lymphocyte cultures were established by adding 0-2 ml of heparinised whole blood to 5 ml of RPMI 1640 culture medium supplemented with 10% fetal calf serum and containing penicillin (50 IU/ml), streptomycin (50 μg/ml), L-glutamine (1-4 mmol/l), and phytohaemagglutinin (0-05 ml Gibco M form). The cultures were incubated at 37°C for 72 or 96 hours before harvesting (as convenient for the laboratory). Thymidine (300 mg/ml) was added 24 hours and colcemid (0-5 μg/ml) one hour before harvesting by using standard procedures.5

(B) THYMIDINE BLOCK, DEOXYCYTIDINE RELEASE (THY/DOC)
Lymphocyte cultures were established as for method (A). Thymidine (300 mg/ml) was added and 24 hours later the block was released by adding deoxycytidine (4-54 mg/ml). After a further four hours 15 minutes incubation, colcemid (0-5 μg/ml) was added for 15 minutes and the cultures harvested as for method (A).

(C) FLUORODEOXYURIDINE INDUCTION OF FRAGILE SITES (FUD)
Lymphocyte cultures were established as for method (A) but using TC199 culture medium with 5% fetal calf serum. The incubation and harvesting procedures were also as for method (A) except for the addition of fluorodeoxyuridine (0-1 μmol/l) instead of thymidine.

Control data were obtained from 36 patients screened for fragile X syndrome during the same period who were referred to the laboratory because of developmental delay.
Expression of fragile X. For each patient the number of cells showing fragile X expression is shown as a proportion of the total number of cells examined from each culture.

<table>
<thead>
<tr>
<th>Family</th>
<th>Patient</th>
<th>Sex</th>
<th>Age</th>
<th>THY/DOC No</th>
<th>THY No</th>
<th>FDU No</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>M</td>
<td>3</td>
<td>9/30</td>
<td>5/20</td>
<td>5/20</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>F</td>
<td>15</td>
<td>6/40</td>
<td>3/22</td>
<td>2/18</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>F</td>
<td>43</td>
<td>8/40</td>
<td>3/20</td>
<td>1/20</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>M</td>
<td>18</td>
<td>9/20</td>
<td>4/40</td>
<td>—</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>M</td>
<td>4</td>
<td>7/30</td>
<td>11/30</td>
<td>—</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>M</td>
<td>16</td>
<td>9/25</td>
<td>8/25</td>
<td>8/25</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td>60/235</td>
<td>43/207</td>
<td>27/133</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td>12%–45%</td>
<td>8%–37%</td>
<td>5%–32%</td>
</tr>
</tbody>
</table>

THY/DOC = thymidine block with deoxycytidine release as described in method (B). THY = unreleased thymidine treatment as described in method (A). FDU = fluorodeoxyuridine treatment as described in method (C).

Results

The expression levels of the fragile X chromosome observed in eight patients from five families are shown in the table. In all eight patients the fragile X expression level for the THY/DOC was similar to those of the other methods used, and in six out of the eight patients the expression level was the highest. This was also reflected in the combined results showing an average expression level of 26% for the THY/DOC cultures compared to 21% for the THY cultures and 20% for the FDU cultures. The THY/DOC cultures showed the highest range of expression levels from 12% (patient 7) to 45% (patient 5) compared with 8% to 37% for the THY cultures and 5% to 32% for the FDU cultures.

The fragile X chromosome was not observed in 329 cells examined from the THY/DOC cultures from 36 control patients. Although these data are limited, they are comparable with the control data from the THY and FDU cultures.

A good mitotic index of cells with elongated chromosomes for prometaphase analysis was obtained from all eight patients.

Discussion

Sutherland et al. showed that the addition of deoxycytidine suppressed the thymidine induced expression of the fragile X chromosome if the concentration of deoxycytidine was high (300 mg/l); however, a lower concentration of deoxycytidine (100 mg/l) only suppressed the expression of the fragile X very slightly.

To produce elongated chromosomes the concentration of deoxycytidine used by Wheater and Roberts to release the thymidine block is much less than the concentrations used by Sutherland et al. Our results show that such low concentrations of deoxycytidine may not significantly affect induction of fragile X expression by thymidine.

Therefore, these preliminary results suggest that the deoxycytidine release of thymidine blocked lymphocyte cultures can be a reliable method of both inducing fragile X expression and producing elongated chromosomes for diagnostic purposes.

Using the THY/DOC protocol would allow a laboratory to use a routine single culture for most referrals for analysis of lymphocyte chromosomes with implications for saving both time and resources. This would also allow the retrospective analysis of cases for fragile X expression without the need for additional samples.

The authors thank all the staff of the Regional Cytogenetics Unit, Birmingham Maternity Hospital for their contributions to these cases, and the clinicians for the referral of their patients.

A single lymphocyte culture for fragile X induction and prometaphase chromosome analysis


