LETTERS TO THE EDITOR

Multiple pterygium syndrome: a relatively common disorder among Arabs

Multiple pterygium syndrome (MPS), also referred to as Escobar syndrome or pterygoarthromyodyplasia syndrome, is a rare, autosomal recessive disorder characterised by multiple congenital joint contractures, multiple skin webs, camptodactyly with or without syndactyly, distinct facial appearance with ptosis and antimongoloid eye slant, short stature, kyphoscoliosis, and vertebral segmentation anomalies. Approximately 60 cases have been reported from several countries in English language publications.

In Kuwait, during a community genetic survey at Farwania district hospital, serving a mixed Arab population of 400,000, we have ascertained 13 cases of MPS in six sibships in four Arab families. There were five males and eight females. Their ages ranged from soon after birth to 19 years. Family 1. The parents are normal, first cousin Kuwaitis whose first child (female) had congenital joint contractures, pterygia, and the typical facial appearance, as noted at the age of 7 months.

Features of Turner's and DiGeorge's syndromes with X;22 translocation

We read with interest the paper entitled 'Features of Turner's and DiGeorge's syndromes in a child with an X;22 translocation' by Pinto et al. (J Med Genet 1989; 26: 778–80) and would like to comment on it.

We agree that in this case the DiGeorge's syndrome (DGS) is the result of a X;22 deletion. However, the hypothesis that a paternal meiotic accident plus adrenal hypoplasia (AHC) in one of the mother's X chromosomes was a coincidence is not convincing. The AHC gene is rare and no other case is mentioned in this family. Furthermore, as the authors quoted, "it is tempting to assume that the breakpoint in this t(X;22) is located at the region to which the AHC gene was assigned". This does not imply that the patient's mother is a carrier of the AHC gene. The authors concluded that only the abnormal X was inactivated.

If the replication study was mainly carried out on peripheral blood cells, available surviving lymphocyte cell lines necessarily come from clones with the abnormal X inactivated. This selective effect has been seen in females with X linked immunodeficiency diseases. In the other tissues, inactivation of the normal X, which usually occurs in unbalanced t(X;A), would be sufficient to explain the association of DGS and AHC in this child.

SIMONE GILGENKRANTZ
MICHEL TEBOUL
Laboratoire de Génétique, CRTS Nancy-Brabois,
Avenue de Bourgogne, 54511 Vandoeuvre les Nancy Cédex, France.

Marfan syndrome

Dr de Groote et al (J Med Genet 1990; 27: 82–5) present linkage data for Marfan syndrome using markers on