LETTERS TO THE EDITOR

Multiple pterygium syndrome: a relatively common disorder among Arabs

Multiple pterygium syndrome (MPS), also referred to as Escobar syndrome, or pterygoarthromyodysplasia syndrome, is a rare, autosomal recessive disorder characterised by multiple congenital joint contractures, multiple skin webs, camptodactyly with or without syndactyly, distinct facial appearance with ptosis and antimongoloid eye slant, short stature, kyphoscoliosis, and vertebral segmentation anomalies. Approximately 60 cases have been reported from several countries in English language publications.

In Kuwait, during a community genetic survey at Farwania district hospital, serving a mixed Arab population of 400,000, we have ascertained 13 cases of MPS in six sibships in four Arab families. There were five males and eight females. Their ages ranged from soon after birth to 19 years. Family 1. The parents are normal, first cousin Kuwaitis whose first child (female) had congenital joint contractures, pterygia, and the typical facial appearance, as noted at the age of 7 months.

Our cases of MPS, briefly reported here, represent the largest series reported so far from one centre. It is noteworthy that they are not the only cases detected in Kuwait (population 2 million) where there is a well established community genetic service in three districts. The estimated minimum prevalence in the general population of Farwania district is approximately 1 in 31,000 (13,400 00) and, if the specific age group is considered, the prevalence would be much higher. This prevalence is high for a monogenic malformation syndrome and is similar to that of Bardet-Biedl syndrome in the Arabs of Kuwait. The finding of Thompson et al of a high proportion of Asian and Middle Eastern cases (including a case from Jordan) among 11 cases studied in the UK is highly significant and is not a chance occurrence. Data from other centres in the Middle East may show that MPS is relatively common among Arabs in particular or even among other communities in the Middle East.

AHMAD S TEEBI, AZHAR S DAOUD
Kuwait Medical Genetics Centre and Farwania Satellite Genetic Clinic, and Pediatric Department, Farwania Hospital, PO Box 36660, Raas-24757, Kuwait.


Features of Turner's and DiGeorge's syndromes with X;22 translocation

We read with interest the paper entitled 'Features of Turner's and DiGeorge's syndromes in a child with an X;22 translocation' by Pinto et al (J Med Genet 1989;26:778-80) and would like to comment on it.

We agree that in this case the DiGeorge's syndrome (DGS) is the result of a 22q11 deletion. However, the hypothesis that a paternal meiotic accident plus adrenal hypoplasia (AHC) in one of the mother's X chromosomes was a coincidence is not convincing. The AHC gene is rare and no other case is mentioned in this family. Furthermore, as the authors quoted, "it is tempting to assume that the breakpoint in this t(X;22) is located at the region to which the AHC gene was assigned". This does not imply that the patient's mother is a carrier of the AHC gene. The authors concluded that only the abnormal X was inactivated.

If the replication study was mainly carried out on peripheral blood cells, available surviving lymphocyte cell lines necessarily come from clones with the abnormal X inactivated. This selective effect has been seen in females with X linked immunodeficiency diseases. In the other tissues, inactivation of the normal X, which usually occurs in unbalanced t(X;A), would be sufficient to explain the association of DGS and AHC in this child.

SIMONE GILGENKRANTZ,
MICHEL TEBOUL
Laboratoire de Genetique, CRTS Nancy-Brabois,
Avenue de Bourgogne, 54511 Vandoeuvre les Nancy Cedex, France.

Marfan syndrome

Dr de Groote et al (J Med Genet 1990;27:82-5) present linkage data for Marfan syndrome using markers on