ordinating both sides of her body, which might be related to the agenesis of the corpus callosum. An infant stimulation programme has been of benefit to her.

Our patient is the fourth of full Dutch extraction, while the mother of the patient reported by Wilson et al was of Dutch extraction too. This prompted us to perform genealogical studies in all these patients. No consanguinity could be shown in five generations. We favour a somatic autosomal dominant mutation as the most probable cause of the oculo-cerebrocutaneous syndrome.1,2

We thank the parents of the patient described here and the parents of the patient described by Wilson et al for their cooperation, Dr P L Giorgi for additional information on his patient, and F A M Hennekam (Utrecht), R L E Hoppe (Nijmegen), L M de Jager and E C van't Woud (Amsterdam) for the genealogical studies.

LIESBETH M BLEEEKER-WAGEMAKERS
Department of Ophthalmogenetics,
The Netherlands Ophthalmic Research Institute,
Amsterdam, The Netherlands.

BEN C J HAMEL
Department of Clinical Genetics,
University of Nijmegen,
The Netherlands.

RAOUL C M HENNEKAM
Clinical Genetics Centre,
Utrecht, The Netherlands.

FRITS A BEEMER
Clinical Genetics Centre
and Wilhelmina Children's Hospital, Utrecht,
The Netherlands.

HANNA W E ORTHUYS
Department of Paediatrics,
Academic Medical Centre,
(AMC), Amsterdam, The Netherlands.


BOOK REVIEWS


In 755 closely written pages by eminent workers there is sure to be a lot for anyone to learn. And so there is for the dedicated reader, or insomniac, who has the time and energy to read this guide from cover to cover. Perhaps more relevant to the medical geneticist is how quickly, using this book, they can find the right technique to complete their desired experimental aim, for example, probe labelling for Southern blotting. If you turn to the section on Southern blotting the advice given for synthesis and labelling of probes is for RNA probes, which is certainly not the standard method used in most laboratories for blot probing. Returning, therefore, to the index it turns out there are two separate indexes. The subject index is at the back and the process index at the front. Neither made it easy to find the necessary sections. In fact the random oligo priming method of DNA labelling comes in a section entitled ‘Second strand DNA synthesis with random oligodeoxynucleotides as primers’ and nick translation comes in a section of its own entitled and indexed as nick translation, rather than DNA labelling. In other words this seems to be a volume for those who already know what they want to know. Nowhere that I found during this Odyssey was probe labelling by non-radioactive methods described.

Several other examples of lack of up to dateness were obvious. I could find no mention of the polymerase chain reaction, either in its own right, which could be deliberate policy, or in the sections on DNA sequencing. Filters other than nitrocellulose are only mentioned extremely briefly. There is an almost total lack of illustrations. Surely clarity of presentation should be one of the principal aims of a book of this sort, but I think many readers would end up confused and frustrated.

S MALCOLM


The notion that a cancer cell is totally beyond control has been challenged with greater or lesser vigour for almost a quarter of a century, but it is only recently that a whole wealth of observations has begun to come together to make a coherent picture. Henry Harris expresses it very well. “... genes do indeed exist that have the ability to override, or compensate for, the sum total of whatever genetic events might in any particular case be responsible for generating the malignant phenotype”. This Ciba Foundation Symposium brings together work from a variety of different fields all bearing on this central theme. Chapters range from the genetic control of melanoma in Xiphophorus and tumour suppressor genes in Drosophila, through experimental studies on the suppression of the malignant phenotype by cell fusion in culture, to the recognition, isolation, and cloning of the human