associated with significant neonatal mortality. The majority of reported cases are secondary to parental chromosome rearrangements. The phenotype in duplication 16q is difficult to ascertain fully because of the variable concomitant chromosome deletions, although common features include pre- and postnatal growth retardation, failure to thrive, low set, malformed ears, long philtrum, micrognathia, cryptorchidism, and joint contractures.

Three cases have been reported previously with deletion 9p and concomitant duplication 16q secondary to a parental translocation. One case is paternally derived with identical breakpoints to our patient. Two other cases have larger deletions of 9p and smaller duplications of 16q. The table outlines and compares the clinical features in our patient, the three previously reported patients, and the 9p phenotype.

Our patient clearly has many features of the deletion 9p syndrome and resembles the three cases previously described with an unbalanced translocation involving chromosomes 9 and 16. She has done well with craniofacial surgery and is currently functioning at the 14 to 15 month level.

We wish to thank Debra Hopfensperger for preparation of the manuscript and Fred Flohrschtz III for graphics.

References

Correspondence to Dr Judith Allanson, Department of Genetics, Children’s Hospital of Eastern Ontario, 301 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.

De novo terminal deletion 7p22.1–pter in a child without craniosynostosis

F SPELEMAN*, M CRAEN†, AND J LEROY†
Departments of Medical Genetics* and Paediatrics†, University Hospital Ghent, Belgium.

SUMMARY A patient with a de novo terminal deletion of the short arm of chromosome 7 (p22.1–pter) is described. Facial dysmorphism, a congenital heart defect, and genital hypoplasia were evident. There were no signs of craniosynostosis. Our observation confirms that deletion of 7p22 is not necessarily associated with craniosynostosis.

More than 20 patients with malformation syndromes resulting from partial deletions of the short arm of chromosome 7 have been reported. Most of the deletions are cytogenetically different. The majority of patients show variable clinical features most of which are common to congenital anomaly syndromes resulting from other types of aneuploidy. Craniosynostosis, however, has so far appeared to be consistently associated with deletion of a segment of band 7p21.3 and the exact location of the chromosomal segment critically important for this type of craniosynostosis has been the subject of much discussion.

We report on a patient with marked facial dysmorphism, tetralogy of Fallot, and genital hypoplasia but without craniosynostosis, whose karyotype showed a de novo terminal deletion of the short arm of chromosome 7 (7p22.1–pter). To our knowledge, this is only the second patient reported with a pure terminal 7p22 deletion.

Case report

A six year old boy was referred because of severe psychomotor retardation and a congenital heart defect. Weight was 96 kg, length 90.0 cm, and head circumference 44.5 cm (all <3rd centile). He was the second child of healthy, unrelated parents. He was delivered at 38 weeks’ gestation with a birth weight of 2300 g, a length of 45 cm, and a head circumference of 32.5 cm. On clinical examination, facial dysmorphism was apparent with an antimongoloid eye slant, epicanthic folds, broad and flat nasal bridge, thin upper lip, triangular shaped
localise the breakpoint at 7p22.1 (fig 2b). The karyotypes of both parents were normal.

Discussion

Nine interstitial and 12 terminal deletions of 7p have been reported. Most cases have been reviewed by Motegi *et al* and Schöning-Springler *et al.* Fig 3 shows an ideogram of the short arm of chromosome 7 with a comparative representation of the reported deletions, together with an interstitial deletion reported by Garcia-Esquivel *et al.* and the present patient. Clearly, there is considerable cytogenetic heterogeneity regarding size and localisation of the deleted segment. Seven patients had a terminal deletion of band 7p22 (fig 3 a–e). Five terminal deletions were monosomic for band 7p22 as well as band 7p21 (fig 3 f–j). Three interstitial deletions had partial loss of 7p21 and partial or complete loss of 7p15 (fig 3 k–n). The remaining interstitial deletions

CYTOGENETIC STUDIES

Peripheral blood lymphocytes were cultured according to standard synchronisation techniques. Forty R banded and 30 G banded cells were analysed. The R banded cells with good banding quality showed a small terminal deletion of the short arm of chromosome 7. G banding showed that the 7p21 band was intact and careful analysis indicated that the 7p22.2 band was deleted (fig 2a). We can therefore

FIG 1 Facial appearance of the proband.
were monosomic for different bands proximal to 7p21 (fig 3 a-o-r). Interestingly, breakpoints are most frequently located at subbands 7p22.1 (fig 3 a-e, k, s) and 7p21.1 (fig 3 g-i, k, m, o-q). In view of this cytogenetic heterogeneity, it is not surprising that no consistent 7p - syndrome has emerged from the reported cases. Comparison of the clinical findings showed that there are some characteristic features which, however, do not seem to be correlated with loss of specific segments of 7p and are common findings in patients with any type of aneuploidy: cranial dysmorphism, cleft palate, saddle nose, small, dysplastic, low set ears, and foot malformations.1, 2 Premature craniosynostosis, on the other hand, is an uncommon finding in patients with chromosome anomalies but was reported in nine patients with 7p deletions (fig 3). Craniosynostosis appears to be associated consistently with deletions of parts of band 7p21.1, 3 Our patient showed some of the common findings reported in patients with monosomy 7p: a broad and flat nasal bridge, low set and poorly formed ears, antimongoloid slant of the palpebral fissures, overlapping of the toes, and genital hypoplasia. Cytogenetic analysis in our patient showed a small terminal deletion involving band 7p22. Only one other patient has been reported with a similar deletion without additional aneuploidy for another chromosome segment.4 We have compared the clinical findings in these two patients with the main clinical characteristics in patients monosomic for band 7p21 or 7p221, 6-9 (table). Even in the subgroup of patients with 7p deletions with clearly overlapping regions for the deleted segment there is considerable clinical heterogeneity. Our patient broadens this clinical spectrum; a normal forehead, overlap of the second toe over the third bilaterally, and tetralogy of Fallot are features which are not present in the six other patients.

An interesting conclusion can be drawn with regard to the craniosynostosis. Much interest has focused on the assignment of the critical segment for craniosynostosis. Baccichetti et al6 suggested that deletion of part of band p21 could be associated with craniosynostosis. Motegi et al10 restricted the critical segment to the midportion of 7p21 (7p21.2 or the proximal part of 7p21.3). Garcia-Esquivel et al10 proposed the 7p21.1 subband. On the other hand, Schömig-Spingler et al12 concluded that loss of a segment distal to the p21 band would be crucial, based on reports of patients with craniosynostosis but without involvement of band p21.5, 10-11. Zackai and Breg10 described two cases with ring chromosome 7 in which possibly more than the terminal p22 band was involved. The patient with craniosynostosis reported by Fryns et al4 was also trisomic for 2q32-ter owing to an unbalanced t(2;7) and was explained by Garcia-Esquivel et al10 as a position effect. In the last case it is not clear to what extent...
TABLE Clinical findings in patients with 7p2 deletion.

<table>
<thead>
<tr>
<th></th>
<th>Wilson et al<sup>a</sup></th>
<th>Friedrich et al<sup>a</sup></th>
<th>McPherson et al<sup>a</sup></th>
<th>Nakagome et al<sup>a</sup></th>
<th>Baccichetti et al<sup>a</sup></th>
<th>Schönig-Spingler et al<sup>a</sup></th>
<th>Present case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleted segment</td>
<td>15.3(?)—pter</td>
<td>15—22.3</td>
<td>21—22</td>
<td>21.3—22.3</td>
<td>22.1—22.3</td>
<td>21—pter</td>
<td>22.2—pter</td>
</tr>
<tr>
<td>Sex</td>
<td>F</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>2665</td>
<td>2500</td>
<td>2900</td>
<td>1900</td>
<td>3200</td>
<td>2650</td>
<td>2300</td>
</tr>
<tr>
<td>Gestational age (wk)</td>
<td>38</td>
<td>40</td>
<td>37</td>
<td>40</td>
<td>38</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>Psychomotor retardation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Abnormality of skull</td>
<td>Acrocephaly</td>
<td>Trigonocephaly</td>
<td>Turricephaly, flat occiput</td>
<td>+</td>
<td>+</td>
<td>Trigonocephaly</td>
<td></td>
</tr>
<tr>
<td>Craniosynostosis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>Prominent forehead</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Palpebral fissures</td>
<td>Downward slanting</td>
<td>Upward slanting</td>
<td>Short</td>
<td>Downward slanting</td>
<td>Short</td>
<td>Downward slanting</td>
<td></td>
</tr>
<tr>
<td>Epicantbic folds</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Depressed nasal bridge</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>High arched palate</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cleft palate</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Low set, dysplastic ears</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fingers</td>
<td>Long, slender</td>
<td>Overlapping 2, 5 over 3, 4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Drumstick thumbs with far ulnar-proximal insertion</td>
<td>Hypoplastic, proximally implanted thumbs</td>
</tr>
<tr>
<td>Feet</td>
<td>—</td>
<td>Rocker bottom feet</td>
<td>Talipes equinovarus</td>
<td>Pes varus</td>
<td>Club feet</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Toes</td>
<td>Long, slender</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Overlapping 2 over 3</td>
<td>—</td>
</tr>
<tr>
<td>Cardiovascular anomalies</td>
<td>—</td>
<td>Aortic stenosis</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Persistent ductus arteriosus</td>
<td>Tetralogy of Fallot</td>
</tr>
<tr>
<td>Genital anomalies</td>
<td>—</td>
<td>Hypoplasia</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Hypoplasia</td>
<td>Hypoplasia</td>
</tr>
</tbody>
</table>
band p21 was involved in the deletion. Therefore, deletion of 7p21.1—p21.2 would be compatible with the association with premature craniosynostosis.

Our case and the patient of Baccichetti et al.4 are the only two reported pure terminal deletions of 7p22. Neither patient had signs of craniosynostosis and they therefore provide additional evidence that partial or complete deletion of band 7p22 is not necessarily associated with craniosynostosis.

References

Correspondence to Dr Frank Speleman, Department of Medical Genetics, University Hospital Ghent, De Pintelaan 185, B-9000 Ghent, Belgium.

A non-centromeric C band variant on chromosome 11q23.2

D K SPAK*, K JOHNSTON†, AND T A DONLON*‡

*Clinical Cytogenetics, Stanford University Hospital; †Division of Genetics, Department of Pediatrics; and ‡Department of Pathology, Stanford University Medical Center, Stanford, California 94305, USA.

SUMMARY An extra G band was found inserted into chromosome 11q23.2 in a boy who had severe developmental delay and anal stenosis. Cytogenetic characterisation of this extra band showed that it was composed of Q band brilliant, C band heterochromatin. It was also present in clinically normal subjects in two other generations and was therefore presumed to be unrelated to the clinical abnormalities in the proband. Although rare, this cytogenetic anomaly may be useful as a genetic marker for 11q23.2.

Chromosome polymorphism has been well described in the human genome and includes differences in amount, location, and type of pericentromeric constitutive heterochromatin.1 These variations are attributed primarily to gain or loss of repetitive DNA sequences that have synonymously been referred to as satellite DNA.2 Changes in the amount of this material are believed to be caused by unequal recombination or over-replication or both.3 Occasionally, pericentromeric inversions of this genetically inert material are observed, most commonly on chromosome 9.4 There also appear to be different types of constitutive heterochromatin on different chromosomes as these can be distinguished cytochemically. For example, chromosome 9 contains a large block of heterochromatin that can be distinguished using the Giemsa 11 technique and has been used to determine the mechanisms responsible for rearrangement.4 Other regions of the genome can also be distinguished with a montage of other cytochemicals.

To date, very few chromosome variants have been described that involve translocation to parts of the genome other than those in which they are commonly found. Watt et al.5 described a normal subject who had an insertion of the nucleolus organising region (NOR), normally found on the acrocentric chromosomes, along with some adjacent heterochromatin into chromosome 12p. The NOR, while differing from satellite DNA in that it is highly active transcriptionally, may also show a tremendous degree of variation in copy number without any