Syndrome of the month

Emery-Dreifuss syndrome

ALAN E H EMERY
From the Medical School, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG.

SUMMARY Emery-Dreifuss muscular dystrophy is characterised by the triad of (1) early contractures of the elbows, Achilles tendons, and postcervical muscles; (2) slowly progressive muscle wasting and weakness with a humeroperoneal distribution in the early stages; and (3) a cardiomyopathy usually presenting as heart block. The early recognition of the condition is essential because the insertion of a cardiac pacemaker can be life saving. The disorder is usually inherited as an X linked recessive trait (linked to DNA markers around Xq28). However, occasionally it can be inherited as an autosomal dominant trait and there is an indication that this and the X linked form may in some cases have a neurogenic basis. For these reasons it has recently been proposed that the appellation 'Emery-Dreifuss syndrome' be used for this triad of symptoms and signs.

It was nearly a hundred years after Duchenne described the severe form of X linked muscular dystrophy which now bears his name that a clinically similar but milder disease was described by Becker. However, apart from Becker muscular dystrophy another relatively benign form of X linked muscular dystrophy has also been recognised more recently, the unique features of which were delineated some 20 years ago. Its distinguishing features, however, may have been noted earlier by Cestan and Lejonne of the Salpêtrière in 1902, and by Schenk and Mathias of Breslau in 1920. This disorder was referred to as Emery-Dreifuss muscular dystrophy (EDMD; McKusick 31030) in 1979, and there have been many reports of the condition since (reviewed in references 8 and 9). However, recent studies indicate that though it is usually myopathic in origin, it may in some cases be neurogenic. Furthermore, though usually X linked, it can occasionally be inherited as an autosomal dominant trait. For these reasons, and because the features of the condition are so distinctive, the appellation Emery-Dreifuss syndrome (EDS) has recently been proposed. The recognition of the condition is important because the timely insertion of a cardiac pacemaker can be life saving.

Clinical features

The disorder (figure) is characterised by the triad of (1) early contractures of the elbows, Achilles tendons, and postcervical muscles; (2) slowly progressive muscle wasting and weakness with a humeroperoneal distribution in the early course of the disease; and (3) a cardiomyopathy usually presenting as heart block.

Contractures

Muscle contractures are a frequent finding in the later stages of any form of muscular dystrophy or spinal muscular atrophy. However, in this disorder contractures develop before there is any significant weakness. These involve the elbows, which result in the arms being carried in a semiflexed position from childhood, the Achilles tendons, so that the patient walks on his toes, and the postcervical muscles, resulting in limitation of neck flexion. Later, forward flexion of the entire spine becomes limited.

Muscle wasting and weakness

Muscle wasting and weakness predominantly affects the biceps, triceps, anterior tibial, and peroneal muscles early in the course of the disease. Thus, the weakness is more proximal in the upper limbs and distal in the lower limbs. Later, weakness of the pectoral girdle musculature and the knee and hip...
extensor muscles develops. The distribution of muscle weakness may therefore be described as humeroperoneal at the beginning and as scapulo-humeropelvoperoneal later. The serum level of creatine kinase is usually moderately raised, but even in the early stages never approaches the grossly raised levels which occur in Duchenne and Becker muscular dystrophies.

Though frank muscle weakness seems to be uncommon in female carriers of X linked EDMD, there have been reports of affected females with no family history of the disorder, as well as of an affected mother and daughter.

CARDIOMYOPATHY

This usually presents as a cardiac conduction defect clinically manifest by sinus bradycardia and prolongation of the PR interval on ECG. Drowsiness and syncope attacks can occur and, later, frank heart block is a frequent cause of death. Detailed studies have shown that cardiac involvement consists of four independent, though often combined, features: (1) impairment of impulse generating cells; (2) conduction defects with atrial preponderance; (3) increased atrial and ventricular heterotopia; and (4) functional impairment of the ventricular myocardium. Cardiac involvement usually becomes evident as muscle weakness progresses, though exceptionally it may occur before significant weakness is apparent. Provided that the diagnosis is made sufficiently early, the insertion of a cardiac pacemaker can be life saving.

Cardiac conduction defects of varying degree have also been reported in some otherwise healthy female carriers of X linked EDMD.

Prognosis

The disorder is relatively slowly progressive and provided that a cardiomyopathy does not intervene, most affected subjects may be expected to survive into at least middle age with varying degrees of incapacity. There does not appear to be any significant intellectual defect.

Genetics

The majority of cases described so far have been inherited as an X linked recessive trait. The responsible gene is linked to colour blindness, and to
DNA markers located around Xq27→qter. The sum of lod scores from published data so far for linkage between EDMD and the DXS15 locus exceeds 6 at θ=0.10. Linkage studies so far give no evidence of genetic heterogeneity. A proportion of female carriers have slightly raised serum CK levels and this information may be used in conjunction with linked DNA markers for carrier detection.

There have been several reports of families in which EDMD is clearly inherited as an autosomal dominant trait (reviewed in references 8 and 9). Clinically the X linked and autosomal forms are very similar in the distribution of muscle weakness and in the association with early contractures of the elbows, Achilles tendons, and postcervical muscles, and a cardiomyopathy. It has been suggested, however, that the autosomal form may be more variable in its age at onset and degree of severity.

Differential diagnosis

An X linked disorder similar to EDMD has been described recently (Bergia type), but differs in that early contractures are not a feature and all three affected subjects were markedly mentally retarded. An autosomal dominant disorder similar to EDMD has been described, but differs in that cardiac conduction defects are not a feature. A scapuloperoneal syndrome also exists which can be myopathic and has been confused with EDMD, but in fact is a distinct disorder differing in several important respects, namely, in the former, in contrast to EDMD, onset is usually much later (in adult life), early contractures do not occur, and cardiac conduction defects are not a consistent feature. Furthermore, whereas EDMD can be X linked or autosomal dominant and usually myopathic and rarely neurogenic, scapuloperoneal syndrome is autosomal dominant and not X linked, is usually neurogenic, and only occasionally myopathic.

Features which may be used to differentiate between EDMD and some other similar disorders are summarised in tables 1 and 2.

Finally, the so called rigid spine syndrome has some similarities with EDMD because of the occurrence of joint contractures and limitation of spinal flexion. However, in the rigid spine syndrome, which is probably not a single disease entity, these features predominate and any muscle weakness is of secondary importance. Furthermore, cardiac conduction defects are not a feature of the rigid spine syndrome.

Pathogenesis

The protein dystrophin, found to be absent from muscle in Duchenne muscular dystrophy and abnormal in Becker muscular dystrophy, appears to be normal in EDMD. To date the vast majority of cases of EDMD have been assumed to be myopathic in origin on the basis of electromyography (EMG) and muscle histology. This is supported by the fact that a careful neuropathological necropsy study of a 50 year old affected male showed no abnormality of the spinal cord, and the ventral spinal roots were

<p>| TABLE 1 Differential diagnosis of Emery-Dreifuss muscular dystrophy (EDMD). |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Inheritance</th>
<th>Type</th>
<th>Onset (usual)</th>
<th>Predominant weakness (early on)</th>
<th>Early contractures</th>
<th>Mental handicap</th>
<th>Cardiac conduction defects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>X linked</td>
<td>EDMD</td>
<td>Early childhood</td>
<td>Humero-peroneal</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Duchenne</td>
<td>Early childhood</td>
<td>Proximal</td>
<td>–</td>
<td>+/–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Becker</td>
<td>Early adulthood</td>
<td>Proximal</td>
<td>–</td>
<td>?</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Mabry</td>
<td>Early adolescence</td>
<td>Proximal</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Bergia</td>
<td>Early childhood</td>
<td>Humero-peroneal</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Autosomal</td>
<td>EDMD</td>
<td>Early childhood</td>
<td>Humero-peroneal</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Bailey</td>
<td>Early childhood</td>
<td>Humero-peroneal</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>‘Scapuloperoneal’</td>
<td>Adulthood</td>
<td>Scapuloperoneal</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Cardiomyopathy occurs but conduction defects are not a predominant feature.

| TABLE 2 Differentiation between ED and scapuloperoneal syndromes. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Genetics | ED syndrome | Scapuloperoneal syndrome |
| X linked | ++ | ++ |
| Autosomal | + | ++ |
| Clinical-Onset | Early childhood | Early childhood | Adulthood |
| Contracts | Early | Early | Late |
| Cardiac | + | + |
| conduction | | | defects |
| Basis-Myopathic | ++ | + |
| Neurogenic | + | ++ |

J Med Genet: first published as 10.1136/jmg.26.10.637 on 1 October 1989. Downloaded from http://jmg.bmj.com/ on August 20, 2023 by guest. Protected by
found to be intact. There was also no evidence of anterior horn cell loss in a case of the autosomal dominant form of the disorder. However, there is little doubt that in some reported cases there has been disagreement as to the interpretation of muscle biopsy and EMG findings. Furthermore, in a 15 year old affected boy who came to necropsy, various muscles showed both neurogenic and myopathic changes and examination of the spinal cord showed a significant decrease in the number of anterior horn cells. Another family has been described with the autosomal dominant form of EDMD in which both the electromyographic and muscle histological findings were interpreted as indicating a neurogenic basis for the disease. In view of these various findings it has been suggested that the term Emery-Dreifuss syndrome should be used for the disorder characterised by early contractures, humero-peroneal muscle weakness, and a cardiomyopathy, and then classified as either myopathic or neurogenic in origin, and inherited as an X linked recessive or an autosomal dominant trait.

References

Emery-Dreifuss syndrome

Correspondence to Professor A E H Emery, Medical School, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG.