Alternate centromere inactivation in a pseudodicentric (15;20)(pter;pter) associated with a progressive neurological disorder

H Rivera*,†, O Zuffardi*‡, P Maraschiot, A Caiulo*,
C Anichini§, R Scarinci§, and R Vivarelli§

From *Biologia Generale e Genetica Medica, Università de Pavia; ‡Cattedra di Biologia Generale, Facoltà di Medicina, Università di Firenze; and §Clinica Pediatrica, Università di Siena, Italy.

SUMMARY A 13 year old male with a severe progressive neurological disorder was found to have a pseudodicentric chromosome resulting from a telomeric fusion 15p;20p. In lymphocytes, the centromeric constriction of the abnormal chromosome was always that of the chromosome 20, while in fibroblasts both centromeres were alternately constricted. Cd staining was positive only at the active centromere, but a weak anticientromere immunofluorescence was present at the inactive one. We suggest that centromere inactivation results from a modified conformation of the functional DNA sequences preventing normal binding to centromere specific proteins. We also postulate that the patient’s disorder, reminiscent of a spongy glioneuronal dystrophy as seen in Alper’s and Creutzfeldt-Jakob diseases, may be secondary to the presence of the pathogenic isoform of the prion protein encoded by a gene mapped to 20p12→pter.

The concept of a non-functional or weak centromere was first advanced to explain the behaviour of a dicentric wheat chromosome during cell division. The term centromere inactivation was introduced later to account for comparable observations in man and is currently used in mammalian cytogenetics. Inactive centromeres behave as inert structures during cell division possibly as a consequence of ineffective spindle attachment. This functional inability is consistently correlated with negative Cd staining and, in most cases, with the absence of constriction in mid-metaphase, while the centromere associated heterochromatin usually retains its staining properties. In most pseudodicentric chromosomes, the inactivation affects only one centromere in an apparently random manner. We report on a heterodicentric chromosome exhibiting alternate centromere inactivation.

Case report

The patient was born on 6.4.76 to a 35 year old, G3P1A1 mother and an unrelated 42 year old father. Both parents and the only sib are healthy.

The pregnancy was complicated by maternal hypoglycaemia in the sixth month. Delivery took place in the 38th week with cephalic presentation; birth weight was 2750 g. Because of severe perinatal hypoxia, the infant was kept in an incubator for 20 days. At three months of age, he had a generalised febrile convulsion, which recurred one year later. Psychomotor development was reportedly normal until three years when he suffered from a severeencephalitis-like illness with loss of consciousness for 10 days; afterwards, he was no longer able to walk and talk and showed progressive intellectual impairment. At that time, an EEG disclosed a disorganised pattern with diffuse paroxysms and mixtures of spikes and sharp waves. CT scan showed slight enlargement of the cerebral fissures and ventricular system. Other examinations, such as muscle biopsy, plasma chromatography, lysosomal enzyme determinations, and skeletal radiographs, yielded normal results. At 10 years, a fundoscopy showed pale papillae, some pigmentedary changes, and incipient capsular lens opacification. At 13 years, the patient was confined to a supine position and had axial hypotonia but hypertonic tetraparesis and increased deep tendon reflexes; Babinsky sign was negative. He was unable to communicate and was incontinent. Hearing and vision were apparently preserved. Facial features
Alternate centromere inactivation in a pseudodicentric (15;20)(pter;pter)

A slower activity was observed in repeated EEGs.

Material and methods

Lymphocyte and skin fibroblast cultures were prepared and processed by standard techniques. Chromosome preparations were processed for Q, G, C, NOR, DA-DAPI, and high resolution banding techniques. The centromeres were further characterised by the Cd and anticentromere immunofluorescence staining techniques. Parental chromosomes were studied in blood lymphocytes with Q and NOR banding.

<table>
<thead>
<tr>
<th></th>
<th>Active No 15</th>
<th>Active No 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytes</td>
<td>0</td>
<td>144 (100%)</td>
</tr>
<tr>
<td>Fibroblasts 2n*</td>
<td>6 (7.9%)</td>
<td>70 (92.1%)</td>
</tr>
<tr>
<td>Fibroblasts 4n</td>
<td>4 (12.5%)</td>
<td>28 (87.5%)</td>
</tr>
</tbody>
</table>

*In one additional cell the chromosome appeared dicentric.

Results

The patient had 45 chromosomes with an abnormal chromosome resulting from an end to end fusion of 15p;20p. This chromosome had only one primary constriction, which, in lymphocytes, always corresponded to the No 20 centromere, whereas in fibroblasts both centromeres were alternately constricted (fig 1, table). In one fibroblast, the chromosome appeared as a true dicentric. The heterochromatin associated with either the suppressed or active centromeres was C and DA-DAPI positive. The inactive No 15 centromere was Cd negative in lymphocytes and exhibited a weak fluorescence after antikinetochore staining in fibroblasts (fig 2). The smaller number of cells with the opposite inactivation pattern prevented a similar characterisation of the suppressed No 20 centromere. The intercalary NOR was Ag positive in all of the 28 lymphocytes scored. The patient also had a maternally inherited inv(9) and thus his karyotype is 45,XY,inv(9)(p11q13)mat,—15,—20,+psu dic (15;20) (pter;pter).
At the first and second passages 64 of 252 fibroblast metaphases (25.4%) were tetraploid, but at the seventh passage only three of 31 cells were. In 32 C banded tetraploid cells, both abnormal chromosomes showed the same centromere inactivation pattern.

Parental karyotypes had no informative chromosome 15 polymorphisms.

Discussion

This abnormal chromosome appears to result from a telomeric fusion without visible material loss. It is indeed a pseudodicentric with two centromere inactivation patterns, the No 20 centromere being predominantly active. We know of four other heterodicentrics with alternate centromere inactivation,10-13 but whether such functional mosaicism results from successive inactivation-reversion processes or long enough persistence of a functionally dicentric chromosome to produce the distinct cell lines is still uncertain.14 15 Although an irreversible inactivation has been documented in one instance,16 the finding in the same cell of pseudodicentrics with different centromere inactivation patterns12 17 indicates that a reversible process can also exist. Our case differs from the previous ones in the apparently tissue limited differential centromere activity, but whether this is the result of sampling error or represents a genuine difference of potential significance remains open to question.

As to the mechanism of centromere inactivation, a functional modification2 18 or a deletion11 15 19 of critical DNA sequences have been proposed. In fact, a centromeric deletion was shown in a cell line of a patient with a terminal rearrangement 13p;20q.15 Nevertheless, the following points are in favour of a functional modification. (1) The common finding that an inactive centromere is C band positive suggests that deletions detectable by light microscopy do not usually occur. (2) It is hard to conceive the concurrence of similar or identical deletions, especially if secondary to mechanical forces,15 in heterodicentric and multicentric chromosomes with inactivation of two or more centromeres.10-12 20 (3) The diverse amounts and presumably classes of centromeric antigens detected by specific antibodies on inactive centromeres2 21 22 could reflect different degrees of the inactivation phenomenon, as suggested by T C Hsu to Earnshaw and Migeon.21 (4) A conspicuous cell to cell intraindividual variability of Y isodicentrics, ranging from a chromosome with two active centromeres to a monocentric element,17 23 24 has been noted.

Centromeric constituents of eukaryotic chromosomes have been conserved during evolution.25 26 By analogy with the well known centromeric DNA sequences of yeast, there may be repeats of a prototypical unit essential for spindle attachment in higher organisms.27 In addition, satellite DNA seems to play a crucial role in the pairing of sister...
Alternate centromere inactivation in a pseudodicentric (15;20)(pter;pter) 629

chromatids at the primary constriction.28-30 Both these functions are mediated by specific DNA-protein interactions. Among the several centromeric proteins, the CENP-B antigen would be responsible for the open conformation of the centromeric chromatin,31 whereas a mitosis specific polypeptide seems to participate in the anchorage of the kinetochores to functional DNA domains,32 and still another protein subset would be involved in centromere constriction, probably via its association with aliphid or other satellite DNA sequences.33 34 Taken together, these data suggest that centromere inactivation may result from a modified conformation of the critical DNA sequence preventing normal binding to proteins, but how this is accomplished is as yet unclear. The disappearance of the constrictions and the eventual negativity to C banding35 are likely to be a consequence of this inactivation process. Thus, there are at least three distinct but not mutually exclusive mechanisms accounting for the stability of dicentric or multycentric chromosomes. These are centromere inactivation, centromere deletion, and coordinated segregation of two (close) active centromeres.36 37 The premature separation of supernumerary centromeres, previously proposed as a stabilising device,20 38 should then be regarded only as an inherent manifestation of the inactivation process.

The NOR activity in the present case seems unaffected by the suppression of the acrocentric's centromere and so conforms to previous similar cases.5 15 On the other hand, the significant loss of NOR activity observed in a 9;13 pseudodicentric when both centromeres were constricted suggests that the control of these phenomena is related.13

Our patient, as was found in the case of Vianna-Morgante and Rosenberg,15 had a higher proportion of tetraploid fibroblasts. The cause and significance of this finding remains obscure.

Although a non-genetic aetiology of our patient's neurological disorder cannot be excluded, the clinical course is reminiscent of a spongy glioneuronal dystrophy as seen in Alper's and Creutzfeldt-Jakob diseases.39 The gene coding for both the cellular and the scrapie isoforms of the prion protein associated with Creutzfeldt-Jakob disease has been mapped to 20p12→pter.40 The chromosome rearrangement in our patient could have resulted in a disruption of the gene function and thus in the actual phenotype. For instance, it could be that the adjacent active NOR determines an overproduction of the cellular isoform which in turn supersedes the control mechanisms and, via adequate post-translational events,41 ultimately results in the presence of the pathogenic scrapie isoform.

A Cailo is supported by Associazione Studio Malformazioni, Milano. The authors are grateful to Professors M Fraccaro and A Fois for critical reading of the manuscript.

Note added in proof

Prusiner et al (Nature 1989;338:342–5) reported that the prion protein gene on the short arm of human chromosome 20 might be abnormal in the apparently autosomal dominant Gerstmann-Straussler syndrome.

References

16 Drets ME, Therman E. Human telomeric 6;19 translocation chromosome with a tendency to break at the fusion point. Chromosoma 1983;88:139–44.
18 Hsu TC, Pathak S, Chen TR. The possibility of latent


Correspondence to Professor Orsetta Zuffardi, CP 217, I-27100 Pavia, Italy.