of late replication. In the 13q portion of the der(X), band 13q22 shows faint staining, suggesting late replication and hence inactivation. The phenotype of our patient supports the replication pattern in that she has some but not all the features associated with trisomy 13q).

A 50% increase in her ESD activity, compared to that of the normal parents, confirms, as previously shown by Mohandas et al., non-inactivation of the ESD loci in the 13q portion of the der(X) chromosome.

We thank Dr R C Sparkes and colleagues of the Division of Medical Genetics, UCLA School of Medicine, Los Angeles for performing the ESD levels and Mrs H Lawton for typing the manuscript.

* Cyto genetics Laboratory, Laboratory Services, Wellington Public Hospital, Wellington 2; and † Department of Pediatrics, Wanganui Hospital, Wanganui, New Zealand.

References

Correspondence and requests for reprints to D R Romain, Cytogenetics Laboratory, Laboratory Services, Wellington Public Hospital, Wellington 2, New Zealand.

Is the expression of fra(2)(q13) age dependent?

In 1987 Keskiaho et al. described the inherited folate sensitive fragile site fra(2)(q13) in three unrelated, mentally retarded children, two of them with different forms of epilepsy. Repeated chromosome studies in the six parents failed to detect the same fra(2)(q13) in any of them, except for one cell in one of the fathers. The authors concluded that fra(2)(q13) can be transmitted by persons not expressing it and that fra(2)(q13) expression may be age dependent.

In the fragile X screening programme of the Leuven Centre for Human Genetics we had a similar experience.

We detected a fra(2)(q13) in two dystrophic and profoundly retarded male sibs in 30% and 20% respectively of the cells in three different cultures. The boys were three months and 18 months old at the time of examination and presented with recurrent convulsions, failure to thrive, and similar dysmorphic craniofacial features with narrow, sloping forehead, long occiput, exophthalmia, and micrognathia. Both died before the age of two years and, apart from the craniofacial dysmorphism and a large interhemispheric cerebral gyroma, no other anomalies were found.

These brothers were the fourth and fifth born children of a 34 year old moderately mentally retarded mother and a 32 year old alcoholic father. Three other children of this family, one boy and two girls, aged between three and seven years, are physically normal with borderline mental development. We were unable to find the fra(2)(q13) in three separate lymphocyte cultures from the parents and these three children.

The findings in the present family confirm the data of Keskiaho et al. that persons not expressing the fra(2)(q13) can transmit it and that its expression may be age dependent.

On the other hand, large scale studies of autosomal fragile sites in the mentally retarded versus a control population failed to show any relationship between the expression of autosomal fragile sites and clinical abnormalities or mental retardation.

J P Fryns and H Van den Berghe
Centre for Human Genetics, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.

Simultaneous occurrence of heritable t(3;7) and t(14;21) in two sibs

Cytogenetic analysis was performed on a one year old boy with features of Down's syndrome. Results showed a

Received for publication 23 December 1987.
Accepted for publication 8 January 1988.

Received for publication 18 November 1987.
Revised version accepted for publication 4 January 1988.
double translocation between chromosomes 3 and 7, and 14 and 21.

The proband, a one year old boy, was the third child of unrelated, healthy parents. The father was 33 and the mother 31 years of age at the time of his birth. Apparently, the possibility of Down's syndrome was only considered at the time a blood specimen was submitted for karyotyping. The child was not available for clinical evaluation. All other family members investigated cytogenetically were reportedly clinically normal. No history was obtainable regarding the prevalence of miscarriages in the family.

Chromosome analysis was carried out on short term cultured peripheral lymphocytes from the proband as well as other family members shown in the pedigree (fig 1). The proband had a chromosome complement of 46. Evaluation of GTG banded chromosomes showed a balanced reciprocal translocation between chromosomes 3 and 7 with breakpoints at 3pter and 7pter and an unbalanced Robertsonian translocation between chromosomes 14 and 21, namely 46,XY,t(3;7)(7pter--7p15::3p13--3qter,3pter--3p13::7p15--7qter),t(14;21) (fig 2).

Cytogenetic evaluation of the older sister showed 45 chromosomes with a balanced translocation in both t(3;7) and t(14;21) combinations (fig 2). The younger sister had a normal karyotype. The father had a balanced Robertsonian translocation between chromosomes 14 and 21. The mother had a balanced reciprocal translocation between chromosomes 3 and 7. The paternal uncle, grandfather, and his sister all had a balanced Robertsonian translocation between chromosomes 14 and 21.

Heritable translocation between chromosomes 3 and 7 has, to our knowledge, not been reported before, but...
t(14;21) is a well recognised entity.¹ We could also find no report where both a t(3;7) and t(14;21) occurred in the same family or person.

We thank Genetic Services Division of the Department of National Health and Population Development of the RSA for financial support.

ABRAHAM J KRUGER*, STANDER JANSENT, MUNRO P MARXT, DENNIS J COETZEE+, ANNA E CILLIERS†, SALOMIE HUMAN†, ISABELLA Z SPIEST, AND FREDA ROUX†

Departments of Neurology* and Human Genetics†, University of the Orange Free State, Bloemfontein, Republic of South Africa.

Reference

Correspondence and requests for reprints to Dr S Jansen, Department of Human Genetics (G11), University of the Orange Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa.

FIG 2 Partial karyotype illustrating the translocations present in the proband.