Linkage of the tuberous sclerosis locus to a DNA polymorphism detected by v-abl

J M CONNOR, L A PIRRIT, J R W YATES, A E FRYER*, AND M A FERGUSON-SMITH
From the Duncan Guthrie Institute of Medical Genetics, Yorkhill, Glasgow G3 8SJ; and *Royal United Hospital, Bath.

SUMMARY Linkage analysis was undertaken in six families with tuberous sclerosis (TS) using a restriction fragment length polymorphism detected by v-abl. No recombinants were observed in 13 informative meioses (four phase known) giving a maximum lod score of 3.18 at zero recombination (confidence limits 0 to 0.15). This provides further evidence for the assignment of TS to 9q34 and should facilitate cloning of the structural gene, genetic counselling, and first trimester prenatal diagnosis.

Tuberous sclerosis (TS) is an autosomal dominant disorder with a variable phenotype which commonly includes hypopigmented skin macules, adenoma sebaceum, ungual fibromas, seizures, and mental retardation. The initial suggestion of linkage of TS to the ABO blood group has recently been confirmed in a collaborative UK study. This maps the locus for TS to 9q34. We provide here further evidence for this assignment.

Methods

Six families with TS suitable for linkage analysis were ascertained from the genetic records of the West of Scotland Regional Genetics Centre. Affected subjects conformed to the diagnostic criteria of Gomez and unaffected subjects at risk were rigorously investigated as detailed elsewhere.

The methods for DNA extraction and restriction fragment identification have been described previously. DNA from each family member was digested with TaqI and after electrophoresis and Southern blotting was probed with pSA-19 which is a 1.9 kb fragment of v-abl. Lod scores were calculated using the computer programme LIPED assuming a penetrance of 98% and the confidence interval was determined by taking values of the recombination fraction corresponding to a lod score one unit less than the maximum.
Linkage of the tuberous sclerosis locus to a DNA polymorphism detected by v-abl

Three of the six families were informative for this RFLP and their pedigrees and DNA autoradiographs are shown in figs 1 and 2. Subjects 6, 13, 14, 27, and 29 had normal clinical and ophthalmological examinations (including examination of the skin under ultraviolet light) but were excluded from the analysis because they had not had cranial CT scans, renal ultrasound, and x rays of the hands and feet, as demanded by the rigorous protocol adopted for an earlier study.3 With these exclusions no recombinations were observed in 13 informative meioses giving a peak lod score of 3.18 at zero recombination (table). If these subjects had been included as unaffected there would have been no recombinations in 18 informative meioses giving a maximum lod score of 4.64 at zero recombination.

Discussion

The human oncogene c-abl is the cellular homologue of the transforming sequence v-abl which was first discovered in the Abelson strain of murine leukaemia virus (A-MuLV). The coding sequences for c-abl extend over a 225 to 300 kb region and the v-abl homologous regions (VAHR) are located at its 3' end.9 Human c-abl has been localised to 9q34 by in situ hybridisation and somatic cell hybrid panels and is transferred to chromosome 22 in the reciprocal translocation which creates the Philadelphia chromosome.10-14 The adenylate kinase 1 (AK1) linkage group has also been regionally localised to 9q34 by dosage studies using children with various imbalances of chromosome 9,15 but unlike c-abl is not transferred to chromosome 22 in the Philadelphia chromosome16 which would suggest that c-abl is distal to AK1.

Using c-abl (ablK-2) Barker and White17 have described diallelic polymorphisms with TaqI, PstI, AccI, and StuI (each with an infrequent allele frequency of 0.11). The present study using the TaqI polymorphism detected by v-abl has shown linkage to TS and provides further evidence for the assignment of TS to 9q34. This marker will be more useful for early prenatal diagnosis than the ABO or AK1 loci and will aid attempts to clone the structural gene for TS.

We wish to thank the Wellcome Trust (JMC), the Scottish Hospital Endowments Research Trust (JMC), the Tuberous Sclerosis Association of Great Britain (AEF), Cow and Gate Ltd (AEF), and the Bath Unit for Research into Paediatrics (AEF) for financial support.

Results

The human oncogene c-abl is the cellular homologue of the transforming sequence v-abl which was first discovered in the Abelson strain of murine leukaemia virus (A-MuLV). The coding sequences for c-abl extend over a 225 to 300 kb region and the v-abl homologous regions (VAHR) are located at its 3' end.9 Human c-abl has been localised to 9q34 by in situ hybridisation and somatic cell hybrid panels and is transferred to chromosome 22 in the reciprocal translocation which creates the Philadelphia chromosome.10-14 The adenylate kinase 1 (AK1) linkage group has also been regionally localised to 9q34 by dosage studies using children with various imbalances of chromosome 9,15 but unlike c-abl is not transferred to chromosome 22 in the Philadelphia chromosome16 which would suggest that c-abl is distal to AK1.

Using c-abl (ablK-2) Barker and White17 have described diallelic polymorphisms with TaqI, PstI, AccI, and StuI (each with an infrequent allele frequency of 0.11). The present study using the TaqI polymorphism detected by v-abl has shown linkage to TS and provides further evidence for the assignment of TS to 9q34. This marker will be more useful for early prenatal diagnosis than the ABO or AK1 loci and will aid attempts to clone the structural gene for TS.

We wish to thank the Wellcome Trust (JMC), the Scottish Hospital Endowments Research Trust (JMC), the Tuberous Sclerosis Association of Great Britain (AEF), Cow and Gate Ltd (AEF), and the Bath Unit for Research into Paediatrics (AEF) for financial support.

Discussion

The human oncogene c-abl is the cellular homologue of the transforming sequence v-abl which was first discovered in the Abelson strain of murine leukaemia virus (A-MuLV). The coding sequences for c-abl extend over a 225 to 300 kb region and the v-abl homologous regions (VAHR) are located at its 3' end.9 Human c-abl has been localised to 9q34 by in situ hybridisation and somatic cell hybrid panels and is transferred to chromosome 22 in the reciprocal translocation which creates the Philadelphia chromosome.10-14 The adenylate kinase 1 (AK1) linkage group has also been regionally localised to 9q34 by dosage studies using children with various imbalances of chromosome 9,15 but unlike c-abl is not transferred to chromosome 22 in the Philadelphia chromosome16 which would suggest that c-abl is distal to AK1.

Using c-abl (ablK-2) Barker and White17 have described diallelic polymorphisms with TaqI, PstI, AccI, and StuI (each with an infrequent allele frequency of 0.11). The present study using the TaqI polymorphism detected by v-abl has shown linkage to TS and provides further evidence for the assignment of TS to 9q34. This marker will be more useful for early prenatal diagnosis than the ABO or AK1 loci and will aid attempts to clone the structural gene for TS.

We wish to thank the Wellcome Trust (JMC), the Scottish Hospital Endowments Research Trust (JMC), the Tuberous Sclerosis Association of Great Britain (AEF), Cow and Gate Ltd (AEF), and the Bath Unit for Research into Paediatrics (AEF) for financial support.
References

Correspondence and requests for reprints to Dr J M Connor, Duncan Guthrie Institute of Medical Genetics, Yorkhill, Glasgow G3 8SJ.

Note added in proof

Since submission, first trimester prenatal exclusion testing has been performed using this RFLP for subject 12 in GLA 4136 and his wife.