Discussion

The possibility that NF-I is linked to markers on chromosome 4q appears to have been excluded by the data in Table 2, a conclusion consistent with the findings of other investigators. In addition, the genes for TGFA, EGF, GRL, and EGFR, which may be considered "candidate genes" for NF-I, show no evidence of close linkage. Eleven other loci selected on the basis of convenience also show no evidence of linkage.

References

Correspondence and requests for reprints to Dr V M Riccardi, National Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA.

Linkage analysis of British and Indian families with Von Recklinghausen neurofibromatosis

From *the Institute of Cancer Research, Haddow Laboratories, Clifton Avenue, Sutton, Surrey SM2 5PX; ‡the MRC Research Unit for Inherited Skeletal Disorders, Department of Human Genetics, University of Cape Town Medical School, Observatory 7925, South Africa; and †the Department of Genetics, University of Leicester, Leicester LE1 7RH.

SUMMARY Linkage analysis has been undertaken in two British and three South African Indian families with Von Recklinghausen neurofibromatosis. Eleven polymorphic DNA probes were studied, including both random DNA sequences and candidate oncogenes. Although no evidence for linkage of these probes to the disease was detected, substantial exclusion regions were established on six of the chromosomes studied.
Von Recklinghausen neurofibromatosis (VRNF) is a relatively common autosomal dominant disorder characterised by café au lait spots, cutaneous neurofibromas, and an increased risk of central nervous system tumours. The pathogenesis of the disorder is unknown and no laboratory diagnostic test is available. Several genetic linkage studies have been undertaken in order to map the locus of the VRNF gene, but none of these has detected a significant linkage between a marker and the disorder. We have therefore tested a further 11 polymorphic DNA markers as part of the international effort to locate the affected gene.

Materials and methods

Families were ascertained through the British Neurofibromatosis Patients Association, LINK, and the records of the Department of Human Genetics, University of Cape Town Medical School. The criteria for the diagnosis of VRNF were as follows. (1) In adults, six or more café au lait spots >1.5 cm in diameter and multiple cutaneous neurofibromas. (2) In children, an affected parent and six or more café au lait spots >1.5 cm in diameter.

All subjects included in the linkage analysis were more than five years old. Blood specimens were obtained from two British families and three South African families of Indian descent. A total of 73 subjects was sampled, which included 37 affected subjects and 62 potentially informative meioses. DNA isolation, blotting, and hybridisation were performed as described previously. The probes used were as follows: seven locus specific minisatellite sequences (unpublished data), the hypervariable region 3' to the α globin genes, the erb A2 and sis oncogenes, and 22q11-18, which is a random sequence on chromosome 22.

Likelihood computations were carried out using a modification of the LINKAGE programme. The VRNF gene was assumed to have a population frequency of 2×10^{-4} and a penetrance of 100%. Rapid computation of lod scores for the minisatellite sequences, which have multiple alleles, was facilitated by recoding the genotypes of some subjects so that at most four alleles were used.

Results and discussion

The lod scores at recombination fractions from 0 to 0.4 are shown in the table. No evidence for linkage of any of the probes tested to the VRNF gene was obtained. However, use of the highly polymorphic minisatellite probes has established large regions of exclusion on chromosomes 1, 5, 6, 7, 11, and 12. Assuming that the exclusions do not overlap and that none of the probes is located near the end of a chromosome, a total of 236 cM (approximately 8% of the human genome) has been excluded for VRNF at a lod score of −2 or less. The data also appear to exclude the sis and erb A2 oncogenes as candidate genes for VRNF. Future work will concentrate on the use of probes with high frequency restriction fragment length polymorphisms from regions of the genome where large exclusions for the VRNF gene have not been reported. The exclusion map published in this issue will facilitate the search.

We would like to thank Margaret Ponder for assistance in obtaining the family material, D Higgs for the hybridisations with the α globin gene HVR probe, and M Ormerod for advice on a linkage computer programme. We also thank P Middleton, A Hall, and C Buys for the erb A2, sis, and 22q11-18 probes. This work was supported by grants from the Cancer Research Campaign, the Medical Research Council, and ‘LINK’, the neurofibromatosis associa-

<table>
<thead>
<tr>
<th>Gene</th>
<th>Probe</th>
<th>Chrom</th>
<th>Z at recombination fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1S7</td>
<td>λMS1</td>
<td>1p</td>
<td>=</td>
</tr>
<tr>
<td>D1S8</td>
<td>λMS32</td>
<td>1q</td>
<td>=</td>
</tr>
<tr>
<td>D3S43</td>
<td>λMS8</td>
<td>5</td>
<td>=</td>
</tr>
<tr>
<td>D6S7</td>
<td>λMS9</td>
<td>6</td>
<td>=</td>
</tr>
<tr>
<td>D7S21</td>
<td>λMS11</td>
<td>7pter−q22</td>
<td>=</td>
</tr>
<tr>
<td>D11*</td>
<td>pMS51</td>
<td>11p14−qter</td>
<td>=</td>
</tr>
<tr>
<td>D1S21</td>
<td>λMS42</td>
<td>12</td>
<td>=</td>
</tr>
<tr>
<td>HRA</td>
<td>pC3HVR.64</td>
<td>16p13</td>
<td>=</td>
</tr>
<tr>
<td>ERB2</td>
<td>pH2EA2</td>
<td>17q11</td>
<td>=</td>
</tr>
<tr>
<td>SIS</td>
<td>V-SIS</td>
<td>22q12−q13</td>
<td>=</td>
</tr>
<tr>
<td>D2S10</td>
<td>22c1-18</td>
<td>22</td>
<td>=</td>
</tr>
</tbody>
</table>

*These minisatellite probes have not yet been assigned HGM symbols. The regional assignments of λMS1 and λMS2 are provisional. Chromosomal localisation.
tion. AJJ is a Lister Institute Research Fellow. The
minisatellite probes are the subject of Patent Ap-
lications and commercial enquiries should be
addressed to the Lister Institute of Preventive
Medicine, Brockley Hill, Stanmore, Middlesex HA7
4JD, UK.

References
1 Riccardi VM. Von Recklinghausen neurofibromatosis. N Engl J
2 Sorensen SA, Mulvihill JJ, Nielsen A. Long-term follow-up of
314:1010-5.
3 Riccardi VM, Carey JC. Von Recklinghausen neurofibromatosis
and genetic linkage studies: clinical considerations. J Med
4 Spence MA, Bader JL, Parry DM, et al. Linkage analysis of
neurofibromatosis (Von Recklinghausen disease). J Med Genet
5 Dunn B, Ferrell RE, Riccardi VM. A genetic linkage study in 15
families of individuals with Von Recklinghausen neurofibro-
6 Darby JK, Feder J, Selby M, et al. A discordant sibship analysis
between β-NGF and neurofibromatosis. Am J Hum Genet
7 Huson SM, Meredith AL, Sarfarazi M, Shaw DJ, Compston
DAS, Harper PS. Linkage analysis of peripheral neurofibro-
matisos (Von Recklinghausen disease) and chromosome 19 mar-
8 Dietz JA, Robbins T, Cannon LA, et al. Linkage analysis of
Von Recklinghausen neurofibromatosis: chromosomes 4 and
9 Wong Z, Wilson V, Patel I, Povey S, Jeffreys AJ. Characterisation
of a panel of highly variable minisatellites cloned from
human DNA. Ann Hum Genet (in press).
10 Wong Z, Wilson W, Jeffreys AJ, Thein SL. Cloning a selected
fragment from a human DNA 'fingerprint': isolation of an
extremely polymorphic minisatellite. Nucleic Acids Res 1986;
14:4605-15.
11 Higgs DR, Wainscoat JS, Flint J, et al. Analysis of the human o-
globin gene cluster reveals a highly informative genetic locus.
12 Middleton PG, Angelis CD, Weir-Thompson EM, Steel CM.
14:1925.
13 Julier C, Lathrop M, Lalouel JM, Reghis A, Szajnert MF, Kaplan
JC. New restriction fragment length polymorphisms on
human chromosome 22 at loci sis, MB and IGLV. Cytogenet
14 Hofker MH, Broung MH, Bakker E, Van Ommen GB, Pearson
PL. An anonymous single copy chromosome 22 clone
D22S10 (22q18-18), identifies an RFLP with PstI. Nucleic Acids
15 Lathrop GM, Lalouel JM, Julier C, Ott J. Multilocus linkage
analysis in humans: detection of linkage and estimation of
16 Ott J. Method for recoding alleles to improve calculation
17 Sarfarazi M, Huson SM, Edwards J. An exclusion map for Von
Recklinghausen neurofibromatosis. J Med Genet 1987;24:
515-20.

Correspondence and requests for reprints to D G J Mathew, Institute of Cancer Research.
Haddow Laboratories, Clifton Avenue, Sutton, Surrey SM2 5PX.

Linkage analysis of neurofibromatosis

S KITTUR*, M L LUBS†, M BAUER†, A CHAKRAVARTI‡, AND
H KAZAZIAN*

From *the Department of Pediatrics, Johns Hopkins Institution, Baltimore, Maryland; †the Department of
Genetics, University of Miami, Florida; and ‡the Department of Biostatistics, University of Pittsburgh,
Pittsburgh, Pennsylvania, USA.

SUMMARY Linkage analysis of neurofibroma-
tosis was performed using genes on chromo-
somes 1, 8, 11, and 12. No linkage was found
between NF and C-myc, AT 3, ΙGF-1, PTH,
and gamma globin genes. Evidence for linkage
was found between C-ets 1, on the long arm of
chromosome 11 and NF in two families with a
lod score of 1.88 at θ=0. More families are
being studied to confirm this linkage.

Neurofibromatosis (NF) is one of the common
autosomal dominant neurological disorders with a
frequency of approximately 1 in 3000. The disease is
mainly characterised by café au lait spots and
neurofibromas. These patients have an unusually
high frequency of malignancy compared to the
normal population. The intriguing question is, what
gene do they carry that predisposes them to
malignancy? In order to localise the gene for NF,
linkage analysis using DNA markers was performed.
Three multi-generation families shown in table 1
were used.

Oncogene C-myc, insulin like growth factor-I
antithrombin-3, parathyroid hormone, and gamma
globin genes were not linked to neurofibromatosis
in our families. The lod scores are shown in table 2.

We found a positive lod score of 1.88 with
oncogene C-ets 1 in two informative families (no
recombinants observed in six informative meioses).
These data provide suggestive evidence that the NF