The relationship between the acetylator and the sparteine hydroxylation polymorphisms

D Harmer, D A P Evans*, L C Eze†, M Jolly, and E J Whibley
From the Nuffield Unit of Medical Genetics, Department of Medicine, University of Liverpool, PO Box 146, Liverpool L69 3BX.

SUMMARY Thirty-eight healthy white British Caucasian subjects were hydroxylator phenotyped with sparteine and acetylator phenotyped with sulphadimidine. The results showed that there was no significant difference in the mean sparteine metabolic ratio between eight rapid acetylator extensive hydroxylators and 27 slow acetylator extensive hydroxylators.

There are two well known genetic polymorphisms of drug metabolism in man. The first governs the acetylation of isoniazid sulphadimidine hydralazine,1 dapsone,2 procaine amide,3,4 sulphapyridine,5 a reduced metabolite of nitrazepam,6 and a metabolite of caffeine.7 The N-acetyl transferase enzyme which exhibits polymorphic activity is cytosolic in liver and jejunal mucosa.8 The second governs the hydroxylation of debrisoquine,9 sparteine,10 phenacetin,11 metoprolol,12 propranolol,13 bufuralol,14 guanoxon,15 and perhexilene.16 The polymorphic enzyme is a liver P450.17

A population of healthy subjects has been examined for evidence of interaction between the two polymorphisms.

Materials and methods

Ethical clearance for these experiments was given by the Ethical Committee of the Mersey Regional Hospitals Board and all subjects also gave their informed consent. Thirty-eight healthy white British Caucasian subjects were investigated by means of two phenotyping procedures.

The acetylator phenotyping procedure was carried out with sulphadimidine18 and the hydroxylator phenotyping was carried out with sparteine.19 The two phenotyping tests were carried out at least ten days apart. The analytical procedures for the acetylator phenotyping20 and hydroxylator phenotyping19 were carried out by means of standard published methods.

Results

The acetylator phenotyping information is shown in fig 1. Ten rapid and 27 slow acetylators were found. The results from the subject with an unclear acetylator phenotyping result (a poor hydroxylator) were not considered further in the analysis.

The hydroxylator phenotyping information within both acetylator phenotypes is shown in fig 2. The
mean log10 sparteine metabolic ratio for eight rapid acetylators and extensive hydroxylators was 1.9002±0.1423 SEM, whereas the mean log10 sparteine metabolic rate for 27 slow acetylators and extensive hydroxylators was 0.0155±0.0700 SEM. Comparison of these two means reveals t=0.77, and so with 33 degrees of freedom p>0.05.

Two rapid acetylator poor hydroxylators were identified as shown in fig 2.

Discussion

In this sample there were too few poor hydroxylators to be able to say whether or not the two polymorphisms are genetically independent.

The rapid acetylator extensive hydroxylators had a mean sparteine metabolic ratio which was not significantly different from that of the slow acetylator extensive hydroxylators. This finding is as expected since the biochemical transformations governed by the two polymorphisms are quite different. Sparteine hydroxylation is performed in the endoplasmic reticulum in vivo (microsomes in vitro), while N-acetylation is a cytoplasmic activity.

References

Correspondence and requests for reprints to Dr DA Price Evans, Department of Medicine, C123 Riyadh Armed Forces Hospital, PO Box 7897, Riyadh 11159, Kingdom of Saudi Arabia.