Confirmation of Association Between ABO Blood Groups and Salivary ABH Secretor Phenotypes and Electrophoretic Patterns of Serum Alkaline Phosphatase

DAVID A. PRICE EVANS

From the Department of Medicine, University of Liverpool

Afors, Beckman, and Lundin (1963), who had studied Swedish twin subjects, first pointed out that (1) serum alkaline phosphatases are present in either one or two electrophoretic bands which are under genetic control, (2) that their patterns are closely associated with the ABO blood groups in that the second electrophoretic alkaline phosphatase band is rarely found in adult subjects possessing an A1 or an A2 gene.

Beckman (1964) studied an extensive Brazilian family material comprising 468 adults and 839 children. It was found that all of them with an extra serum alkaline phosphatase band were secretors of ABH blood group substances. There was no correlation with secretion of Lewis substances. Only one adult of the 468 examined possessing an A1 or A2 gene showed two alkaline phosphatase bands; whereas over half the subjects of blood groups O and B showed this character.

Beckman (1964) concludes also that the family studies show that the appearance of the second electrophoretic alkaline phosphatase band is dependent on at least one additional factor besides the ABO and secretor genes.

The purpose of this communication is to confirm in the British population the associations described by Beckman (1964).

Materials and Method

Sera were from random British (white) blood transfusion volunteers.

Salivas were collected by having the subject spit into a test-tube. The quantity collected varied from 2.0 to 5.0 ml. Artificial stimuli to salivation were not employed. The specimens were boiled for 10 minutes on a water bath within an hour after collection, centrifuged at about 2,000 r.p.m. for 5 minutes, and the supernatants were stored at -20°C. when not in use.

Starch was the hydrolysed variety for gel electrophoresis from Connaught Medical Research Laboratories, University of Toronto, Canada.

Colouring agent. Fast Red TR salt (Gurr).

Electrophoresis. A gel was prepared by dissolving 24.2 g. starch in 200 ml. of Tris-HCl buffer 0.05 M, pH 8.8. A 19 cm. long horizontal gel was used, and during electrophoresis the gel and wicks were covered with parafilm. The current was 20 mA, voltage 260 V, and the time 3½ hours. Electrophoresis was conducted at +4°C. In the electrode compartments Tris-HCl buffer 0.3 M, pH 8.6 was used.

The sliced gel was stained for alkaline phosphatase by incubation for one hour at 37°C. with the following modification of the technique of A. L. Latner (personal communication, 1964):

10 mg. sodium naphthyl phosphate in 100 ml.
10 mg. fast red TR salt
20 mg. MgCl2 6 H2O

During incubation the staining medium was renewed four times (to counteract the inhibition produced by the diazo-salt).

The second half of the sliced gel was stained with a saturated solution of Amido Black 10B in a mixture of methanol 200 ml., water 200 ml., glacial acetic acid 40 ml., to check upon the electrophoretic mobilities of serum protein bands.

ABO Blood Grouping. This was carried out by means of the standard tube techniques.

Determination of Salivary ABH Secretor Status. All salivas were tested for H, A, and B activities quantitatively by means of a doubling dilution-agglutination-inhibition technique with 0.145 M sodium chloride as the diluent. Standard salivas from known O, A, and B secretors and non-secretors were included in each day's estimations.

Received November 15, 1964.

126
The findings of Arfors et al. (1963) and Beckman (1964), which are confirmed here, are to be considered very important as they represent a pleiotropism (two or more characters which are controlled by a single gene) at a biochemical level.

Summary

This short communication confirms in the British population results found previously on Swedes and Brazilians. Attention is hereby drawn to the association existing between (1) electrophoretic serum and alkaline phosphatase bands and (2) the ABO blood group and salivary ABH secretor polymorphisms.

The author wishes to thank the following persons: Dr L. Beckman, The Institute of Medical Genetics, University of Uppsala, for the description of unpublished results; Mr W. T. A. Donohoe, Department of Medicine, University of Liverpool, for providing sera from healthy subjects of known blood group and secretor phenotype; and Miss R. Hillary for technical assistance.

References

