DHT-receptor in cultured human fibroblasts: binding study in a family with androgen insensitivity (complete testicular feminisation)

E DONTI,* I NICOLETTI,† P FILIPONI,‡ G VENTI,* V BOCCHINI,* AND F SANTEUSANIO†

From *the Istituto di Biologia Generale and †the Istituto di Clinica Medica, Università di Perugia, 06100 Perugia, Italy

SUMMARY ³H-DHT binding was examined in cultured skin fibroblasts from a patient with complete testicular feminisation (CTF), from his heterozygote mother, and his clinically normal sister, who menstruated normally. Binding parameters were: B_{max} < 1 fmol/mg protein and K_D unmeasurable in CTF; B_{max} = 24 fmol/mg protein and K_D = 3·63 x 10⁻⁹ mol/l in the mother; and B_{max} = 46 fmol/mg protein and K_D = 3·7 x 10⁻⁹ mol/l in the sister. Five cultures obtained from genital and non-genital skin of normal male and female subjects were used as controls, in which B_{max} ranged from 37 to 62 fmol/mg and K_D from 2·0 to 3·6 x 10⁻⁹ mol/l.

The considerable reduction of B_{max} in the obligate heterozygote and the normal binding capacity in the sister, a probable heterozygote, suggests that it may be possible to use the DHT-receptor assay to identify carriers in families with androgen resistance.

Dihydrotestosterone, the 5α reduced form of testosterone, interacts with specific cytosol receptors in cultured human fibroblasts from normal male and female subjects.^{1–2} The DHT-receptor protein is absent in most patients with CTF.^{1,3–5} It is believed that the synthesis of this protein is controlled by an X linked gene and it seems that such a gene locus is subject to inactivation, like other X linked loci.⁶ It remains to be clarified whether the lyonisation influences the phenotypic expression of the gene to a certain extent so that there is no discrimination between normal subjects and carriers. To this end we compared the binding capacity of cultured skin fibroblasts from an 18-year-old possible heterozygote (fig 1, IV.1), the sister of a CTF patient, with that of the 22-year-old hemizygote (IV.2), the 46-year-old obligate heterozygote mother (III.3), and a group of normal control subjects all at reproductive age.

In this way the presence of a distinct difference in B_{max} between the two female subjects of the same family examined by us was shown.

Materials and methods

Radioactive labelled steroid 1,2(³H)-5α-dihydrotestosterone (specific activity 66 Ci/mmol) was obtained from Amersham (England). Unlabelled steroid (5α-dihydrotestosterone), purchased from Sigma (USA), was recrystallised from the organic solvent before the assay. The grades of the reagents, tissue culture media, and other chemicals used were the best available from commercial sources.

![Pedigree of family with androgen insensitivity.](http://jmg.bmj.com/)

Received for publication 11 December 1981
CELL CULTURES
The origins of the cell cultures examined are shown in the table. Cell cultures from the CTF patient (C106, C107) were obtained from abdominal skin and testicular tissue, taken during gonadectomy. The cell cultures from his sister (C113) and mother (C114) were obtained from the skin of the forearm. The control cultures were derived as follows: C120 from the abdominal skin of a normal female; C116, C118, C119 from the skin of the forearm of three normal males; C112 from scrotal skin from one normal male.

Fibroblast cultures were propagated in Eagle's MEM supplemented with 20% fetal calf serum (FCS), vitamins, L-glutamine, and non-essential amino-acids in closed glass flasks, each having a surface area about 44 sq cm, at 37°C. All the assays were performed between the 6th and 13th subcultures.

DHT-RECEPTOR ASSAY
DHT-receptor assay was performed according to Kaufman et al. Confluent monolayers of fibroblasts were washed with fresh Eagle's MEM and reincubated with FCS-free medium for 24 hours. Then the MEM was removed and the monolayers were washed twice with 2 ml of FCS-free medium. The monolayers were incubated in duplicate with various concentrations (1 to 10 mmol/l) of 3H-DHT in FCS-free MEM, with or without addition of 0.5 μmol/l unlabelled DHT, for 45 minutes at 37°C.

The medium was removed and the molarity of labelled DHT was controlled by measuring the radioactivity of an aliquot. The cells were washed twice with MEM, harvested by 0.25% trypsin, and washed twice in 5 ml ice-cold buffer (0.02 mol/l Tris-HCl, pH 7.5, 0.32 mol/l sucrose, 1 g/l bovine gamma-globulin) by centrifugation at 200 g for 10 minutes at 4°C. All subsequent steps were performed at 4°C. The pellets were lysed in 0.5 ml 0.02 mol/l Tris-HCl, pH 7.5, 0.4 mol/l KCl, 1.5 mmol/l EDTA, and 2 mmol/l mercaptoethanol by an ultrasonic cleaner. After centrifugation for 20 minutes at 2000 g, the supernatants were removed and unbound steroid adsorbed with charcoal-dextran (pellets were previously prepared by centrifugation at 2000 g for 15 minutes of a mixture of 1% charcoal and 0.1% dextran T-70 in Tris-KCl, pH 7.5, buffer).

TABLE Binding parameters of DHT-receptor and origin of cell cultures

<table>
<thead>
<tr>
<th>Cell culture</th>
<th>Origin</th>
<th>KD(×10^-9 mol/l)</th>
<th>Bmax(fmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C106</td>
<td>Abdominal skin of CTF patient</td>
<td>Unmeasurable</td>
<td><1</td>
</tr>
<tr>
<td>C107</td>
<td>Gonadal tissue of CTF patient</td>
<td>Unmeasurable</td>
<td><1</td>
</tr>
<tr>
<td>C113</td>
<td>Forearm skin of sister</td>
<td>3.7</td>
<td>46</td>
</tr>
<tr>
<td>C114</td>
<td>Forearm skin of mother</td>
<td>3.6</td>
<td>24</td>
</tr>
<tr>
<td>C116</td>
<td>Forearm skin of normal male</td>
<td>3.6</td>
<td>44</td>
</tr>
<tr>
<td>C118</td>
<td>Forearm skin of normal male</td>
<td>2.2</td>
<td>46</td>
</tr>
<tr>
<td>C119</td>
<td>Forearm skin of normal male</td>
<td>3.2</td>
<td>45</td>
</tr>
<tr>
<td>C120</td>
<td>Abdominal skin of normal female</td>
<td>2.7</td>
<td>37</td>
</tr>
<tr>
<td>C112</td>
<td>Genital skin of normal male</td>
<td>2.0</td>
<td>62</td>
</tr>
</tbody>
</table>

FIG 2 DHT-receptor kinetics and Scatchard plot analysis of cultures obtained from normal subjects. Total binding is dpm/mg protein bound in the presence of 3H-DHT alone; non-specific binding is dpm/mg protein in the presence of 3H-DHT and a 1000-fold excess of unlabelled DHT. The abscissa of Scatchard plots represents 3H-DHT specifically bound, the ordinate moles bound divided by concentration of free hormone. KD is the reciprocal of the slope of the Scatchard plot.
The cytosol-charcoal mixture was vortexed, incubated for 15 minutes, and centrifuged at 2000 g for 20 minutes. Portions of the supernatant were removed for protein determination and for radioactivity counting. For this purpose 150 μl aliquots in 5 ml of Insta-gel (Packard, USA) were counted in a Tricarb (Packard, USA) scintillation spectrometer. Counting efficiency ranged from 33 to 38%, 3H-toluol serving as internal standard. The amount of specifically bound 3H-DHT was determined as the difference between the radioactivity bound in cell cultures containing a great excess of unlabelled DHT and parallel cultures containing 3H-DHT alone. The binding capacity (B max) and apparent dissociation constant (K D) were determined according to Scatchard.

Results

The dissociation constants (K D) of the hormone receptor complex and the values for the maximal binding capacities (B max) in the cell cultures examined are listed in the table.

The cultures derived from forearm and abdominal skin of normal subjects showed a low capacity, high affinity 3H-DHT binding, as shown in the binding curves and Scatchard’s plot analysis (fig 2). The B max and K D values were similar in the cultures derived from non-genital skin, ranging respectively from 37·1 to 46·0 fmol/mg protein and from 2·2 to 3·6 × 10 -9 mol/l. The non-specific binding showed no significant variation between cultures, correlating linearly with the concentration of 3H-DHT in the medium. The culture derived from genital (scrotal) skin showed a greater binding capacity (62 fmol/mg

FIG 3 Binding curves of cultured fibroblasts derived from inguinal skin (C107) and gonadal tissue (C106) of the proband compared to binding curves (mean±SD) of normal subjects (shaded area). The absence of specifically bound 3H-DHT does not permit Scatchard’s analysis.

FIG 4 Binding curve and Scatchard’s analysis of cultures derived from sister’s skin.
protein) compared with those derived from abdominal or forearm skin (fig 2).

No appreciable DHT binding was detectable in skin or gonadal fibroblasts from the androgen insensitive patient (fig 3). The binding parameters of culture C113, derived from the patient's sister, were within the normal range (fig 4). The fibroblasts obtained from the mother's skin (C114) showed a significant reduction of binding capacity (24.8 vs 43 fmol/mg, mean±7.33 SD of controls), even though the affinity of the 3H-DHT receptor complex was normal (fig 5).

Discussion

Complete testicular feminisation is a genetic disorder caused by mutation of an X linked gene. 6 10 The corresponding phenotype is characterised by the absence of androgen receptors, leading to feminine differentiation of androgen target organs. The lack of cytosol receptor protein, responsible for the transport of DHT into the nucleus, can be shown in cultured skin fibroblasts derived from CTF patients. 3 11 12

The cultures derived from normal subjects showed a low capacity, high affinity 3H-DHT binding.

Data obtained from different laboratories show considerable variation in B_{max} values in normal subjects. 3 5 7 13 In our controls, however, the binding capacity ranged from 37 to 47 fmol/mg protein in cultures derived from non-genital skin and reached 62 fmol/mg in a culture derived from scrotal skin. Whether the reduced dispersion of the B_{max} values in our controls can be attributed to the small number of subjects examined or to the high viability of cell cultures in which the DHT-receptor assay was performed remains to be ascertained.

DHT was undetectable in cultures derived from the skin and testicular tissue of the patient with the complete form of androgen insensitivity and this is, therefore, classifiable within complete receptor negative testicular feminisation. 10

The B_{max} of cultures obtained from the mother's skin was reduced in comparison with the controls (24 vs 43), even though DHT-receptor affinity was normal ($K_D = 3.6 \times 10^{-9}$). The reduced binding capacity of the maternal fibroblasts is in agreement with the hypothesis of inactivation of the X linked locus controlling DHT-receptor synthesis in obligate heterozygotes. 8 In the phenotypically normal sister, binding and affinity values were within the normal range. This difference could be explained by the fact that the sister was not a carrier; this hypothesis should, however, be considered with caution. Randomised inactivation of X linked genes, according to Lyon's hypothesis, 14 makes it difficult to interpret data in X linked diseases.

At present, a definite conclusion cannot be drawn from our observations. However, we believe that further studies of DHT binding parameters in the female members of receptor negative, androgen insensitive families could be useful for the identification of the heterozygote.

The authors wish to thank C Giammartino and F Pimpinelli for their expert technical assistance.

References

DHT-receptor in cultured human fibroblasts

Requests for reprints to Dr Emilio Donti, Istituto di Biologia Generale, Università di Perugia, Via del Giochetto, 06100 Perugia, Italy.