Partial trisomy 12q: report of a case and review

SUMMARY
A malformed male infant with pure partial trisomy 12q (q24·1−qter), resulting from an unbalanced segregation of a paternal balanced translocation t(2;12)(q37;q24·1), is described. The cytogenetic and clinical abnormalities of the proband are compared with those of four previously reported cases of partial trisomy 12q, two of which also appear to have pure trisomy of segment 12q24·1−12qter.

There are, apparently, only four previously reported cases with any significant partial trisomy 12q, two of which appear to have no other chromosome imbalance. Here we describe the clinical and cytogenetic abnormalities in a new case of pure partial trisomy 12q, compare the findings with those in the four previous reports, and discuss the cause of the low incidence of this anomaly.

Case report
The proband was born after an uncomplicated pregnancy and delivery at 36 weeks' gestation. His parents, who already had a normal daughter, were unrelated and healthy. The mother was aged 22 years and the father 25 years. There was no family history of spontaneous abortions or stillbirths. At birth the proband weighed 2650 g and his Apgar score was 9.

During the first week he received surgical correction of anal stenosis but otherwise his neonatal period was normal.

On presentation at the Clinica Pediatrica, case reports

FIG 1 Front and side view of proband at 5 weeks.
Received for publication 21 January 1981

FIG 2 Partial karyotypes of father (A) showing balanced translocation involving chromosomes 2 and 12 (arrows) and proband (B) showing derived chromosome 2 (arrow)
University of Catania at 5 weeks, his weight was 2850 g, length 46.5 cm, and head circumference 34.5 cm. He had an odd facies (fig 1, table), a short neck with redundant skin folds, clenched hands with overlapping fingers and clinodactyly of fingers 3 and 5, bilateral hammer toes, a sacral dimple, a small penis, and undescended testes. A cardiac systolic murmur was audible along the left sternal border and x-ray investigation revealed enlargement of the left third cardiac arch. Dermatoglyphic studies showed bilateral transverse single palmar creases and hypoplasia of the digital dermal ridges with a finger tip pattern of 5A, 4Lu, and 1W. Both eyes showed myopic refraction.

On re-examination at 4 months, the previously noted abnormalities were still evident and the child showed severe physical and psychomotor retardation.

Cytogenetic studies

Chromosome preparations were obtained from peripheral blood using standard techniques and GTG banded with a method modified from that of Seabright. The karyotype of the father was shown to be 46,XY,t(2;12)(q37;q24·1) (sub-division of

<table>
<thead>
<tr>
<th>Table: Cytogenetic and clinical details in cases of partial trisomy 12q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases with an associated significant monosomy</td>
</tr>
<tr>
<td>Hirschnoz et al1</td>
</tr>
<tr>
<td>Cytogenetic findings</td>
</tr>
<tr>
<td>Karyotype</td>
</tr>
<tr>
<td>Segregation</td>
</tr>
<tr>
<td>Trisomy Monosomy</td>
</tr>
<tr>
<td>Gestation (wk)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*Observed in photographs only.
12q24 as in Sanchez et al\(^8\) and that of the proband 46,XY,der(2),t(2;12)(q37;q24.1)pat (fig 2). The proband was thus trisomic for segment 12q24.1→12qter with no detectable monosity of 2q.

The karyotype of the mother was normal but the family did not consent to cytogenetic investigation of other relevant family members, who were, however, phenotypically normal.

Discussion

Full trisomy 12 has not been reported in liveborn subjects or in cytogenetic surveys of perinatal mortalities\(^9\)\(^10\) and has only very occasionally been detected in studies of spontaneous abortuses, in embryos showing an early arrest of development.\(^11\)\(^12\)

Similarly, trisomy 12 mosaicism has very rarely been found.\(^13\)

Cases with any significant trisomy of long arm material of chromosome 12 are also extremely rare with only four previous reports, all involving liveborn infants.\(^1\)\(^4\) In contrast, there have been many liveborn cases with trisomy of short arm material of chromosome 12, a few including the juxtacentromeric region of 12q, for which a clinical syndrome has been delineated.\(^14\)

Conversely, in balanced translocations of chromosome 12 there is far greater involvement of the long arm than the short arm.\(^15\)

This discrepancy may be an indication of the lethality of additional long arm material, which would account for the almost complete non-viability of the full trisomic condition. However, since the abnormalities in three of the cases of partial trisomy 12q (present case\(^3\)\(^\,\,3\) were compatible with an extended postnatal survival, the relatively low frequency of partial trisomy 12q in the liveborn population may be the result of factors other than lethality, such as a high level of alternate segregation with a low level of interstitial chiasmata.\(^16\)

The case described here and the previous reports of partial trisomy 12q are similar in resulting from an alternate or adjacent 1 segregation (with and without an uneven number of interstitial chiasmata respectively\(^6\)\(^9\) of a parental balanced translocation (table). The exchange point on chromosome 12 in the cases described by Hobolth et al,\(^2\) Hemming and Brown,\(^4\) and the present report appears to be at q24.1, resulting in trisomy of an almost identical segment of 12q. Furthermore, no monosity of the derived chromosome could be detected in the present case and that of Hemming and Brown,\(^4\) because in both instances either the parental translocation was non-reciprocal or the exchange point was telomeric in the recipient chromosome. In addition, the report of Hobolth et al\(^2\) can also be considered to be a pure trisomy of segment 12q24.1→12qter since the absence of 21p, resulting from the reciprocity of the parental translocation, is unlikely to have contributed to the abnormal phenotype.\(^17\) However, in the cases of Hirschhorn et al\(^1\) and Prieur et al\(^6\) the parental translocations were both reciprocal and almost symmetrical, resulting in trisomy of nearly the whole of 12q with monosity of the distal half of 4q, and trisomy of segment 12q24.2→12qter with monosity of the distal half of 9p, respectively.

In the latter two cases it seems improbable that a definite distinction can be made between the phenotypic expression of the partial monosity and the partial trisomy 12q. It is possible that in the case of Hirschhorn et al\(^1\) for which few clinical details are available, both the partial monosity 4q and the partial trisomy 12q contributed to the abnormalities reported. However, Prieur et al\(^6\) considered that the clinical features in the case they described were, in the main, consistent with the syndrome associated with partial monosity 9p.

It appears likely, therefore, that a phenotypic comparison that only includes the cases with a pure partial trisomy 12q (present case\(^3\))\(^\,\,3\) will be more informative. The clinical features which appear to be common to the present case and to either or both of the other two are upward slanting palpebral fissures,\(^2\) poorly lobulated ears\(^2\)\(^4\) which are low set,\(^2\) flat nasal bridge,\(^4\) long philtrum,\(^2\) micrognathia,\(^2\) short necks with redundant skin folds,\(^2\)\(^4\) simian creases,\(^4\) hammer toes,\(^2\) cryptorchidism,\(^2\) sacral dimples,\(^2\) hypotonia,\(^4\) cardiopathy,\(^2\) and psychomotor retardation\(^2\) (table).

Although there are as yet too few cases to delineate a phenotype for partial trisomy 12q, it is probable that the consistent features in the three cases with pure trisomy of apparently the same segment (q24.1→qter) of chromosome 12 will form the basis of a clinical syndrome which will be defined further with the accumulation of more data.

The authors wish to thank Mr P J Gregory, Dr D P Duckett, and Dr R A F Macleod for their critical evaluation of the manuscript, and Professor F. Mollica for helpful advice.

References

Unilateral radial aplasia and trisomy 22 mosaicism

SUMMARY A child with unilateral radial aplasia, asymmetry, other malformations, and severe physical and mental retardation is reported. In blood and bone marrow cultures a low mosaicism for trisomy 22 was found. In a few cells a chromosome 22 was missing. The importance of early cytogenetic analysis on large numbers of cells is emphasised, especially in cases of asymmetry where mosaicism is suspected.

Radial dysplasia is a relatively common limb malformation which has been associated with major anomalies in various systems, mostly genitourinary, skeletal, gastrointestinal, and cardiac. It may occur within a definite syndrome, for example, thrombocytopenia and absent radius (TAR), Holt-Oram syndrome, Fanconi’s anaemia, and VATERL association, and it has also been reported in chromosomal disorders like trisomy 13 and 18.1

We describe a child with total unilateral radial aplasia associated with a clustering of defects on the same side, in whom trisomy 22 mosaicism was demonstrated.

Case report

A 2900 g female child was born after a normal pregnancy and delivery to non-consanguineous parents of Arabic origin. The 25-year-old mother, the 36-year-old father, and the four other children were healthy. There was no history of any congenital anomaly in the family.

A clustering of malformations was evident on the left side including a small palpebral fissure with slight ptosis, hypotrophy of the cheek, a low set ear with abnormal configuration of the helix, and mild stenosis of the external auditory canal. Total left radial aplasia with absent thumb was present (fig 1). The left forearm, hand, and the four medial fingers were smaller than those on the right side and there was collateral clinodactyly of the little finger with only one transverse crease on the left.

Repeated blood counts, including platelet and

Requests for reprints to Mr SH Roberts, Cytogenetics Unit, Child Health Laboratories, Department of Child Health, University Hospital of Wales, Heath Park, Cardiff CF4 4XN.

Note added in proof

Since submission of this paper five cases of pure, or almost pure, partial trisomy of 12q24 have been reported.18–20 The many features common to these and to the three cases of pure partial trisomy described above support the suggestion in the concluding paragraph that pure trisomy of this region of chromosome 12 results in an identifiable clinical syndrome.

References