gressive in the two children followed up for some
time, one for 8 years and one for 22 months. Two
patients, KB and ME, showed marked develop-
mental delay which we feel goes beyond the effect of
\(\beta \)-glucuronidase deficiency.\(^1\) \(^2\) \(^4\) Both of these patients
had neonatal hyperbilirubinaemia. KB developed a
giant cell hepatitis and a downhill clinical course with
death at 2 years 9 months and ME developed
neurological signs of kernicterus.

Onset of corneal opacification varied from 7
months\(^3\) to 8 years.\(^4\)

Progressive joint contractures, first manifest in
the newborn period, have been seen in one patient, the
subject of this report.

Findings of dysostosis multiplex have been vari-
able. Consistent findings have included a 'J-shaped'
sella and characteristic pelvic abnormalities with
acetabular dysplasia, narrow sciatic notches, and
hypoplastic basilar portions of the ilia.\(^1\) \(^4\) Widening of
the ribs has been noted in three patients,\(^1\) \(^3\) and
pointed proximal metacarpals have been described in
two.\(^1\) Vertebral abnormalities have differed: a
hypoplastic odontoid and shortening and anterior
irregularities of the vertebral bodies occurred in one
child\(^1\) \(^4\); wedge deformities of the lumbar vertebrae
were described in another.\(^3\) Anterior inferior
beaking of the lower thoracic and lumbar vertebrae
was noted in the subject of this report. In one
additional patient the spine was reportedly normal,
although a mild gibbus deformity was apparent.\(^2\)
Hip dysplasia has been noted in two patients\(^1\) \(^4\)
and has been severe and progressive in one child.\(^4\)

Other abnormalities have included medullary
expansion of the proximal humeri\(^1\) and abnormal
irregular ossification of the humeral heads.

Frequent respiratory infections have been des-
cribed in all patients.\(^1\) \(^3\)

The variability in urinary acid mucopolysac-
charide excretion exhibited by this child merits
comment. The two screens were carried out in the
same laboratory using the same procedure. Although
we cannot rule out a problem with faulty preser-
vation of the first urine sample, variable urinary
acid mucopolysaccharide excretion in other patients
at various points in time has previously been
encountered (Sly, 1980, personal communication).

In summary, this patient's course and data from
published reports indicate that MPS VII, unlike
the other known mucopolysaccharidoses, is a
distinct clinical entity recognisable in the newborn
period. Hydrocephalus and progressive joint
contractures are occasional features. With respect to
developmental prognosis, this disorder is most likely
to be associated with moderate mental deficiency
which does not progress over time.\(^4\)

We appreciate the secretarial assistance of Ms
Betty Grenier in the preparation of this manuscript.

H EUGENE HOYME,*† KENNETH LYONS JONES,*
MARILYN C HIGGINBOTTOM*,
AND JOHN S O’BRIEN†
*Department of Pediatrics and †the Department
of Neurosciences, University of California,
San Diego School of Medicine, La Jolla,
California, and Children's Hospital and Health
Center, San Diego, California, USA

†Supported by March of Dimes Birth Defects Foundation

References
1. Sly WS, Quinton BA, McAlister WH, Rimoin DL.
Beta glucuronidase deficiency. Report of clinical, radio-
logic, and biochemical features of a new mucopoly-
2. Gehler J, Cantz M, Tolkdorf M, Spranger J, Gilbert E,
Drube H. Mucopolysaccharidosis VII: beta glucuron-
3. Beaudet AL, DiFerrante NM, Ferry GD, Nichols BL,
Mullins CE. Variation in the phenotypic expression of
4. Sly WS. The mucopolysaccharidoses In: Bondy PK,
Rosenberg LE, eds. Metabolic control and disease. 8th ed.
5. Leroy JG, Ho MW, MacBrinn MC, et al. I-cell disease:
6. Danes BS, Degnan M. Different clinical and biochemical
phenotypes associated with beta glucuronidase deficiency.
In: Bergsma D, ed. Skeletal dysplasias. New York:
7. Pfeiffer RA, Kresse H, Baumer N, Sattinger E. Beta
glucuronidase deficiency in a girl with unusual clinical

Requests for reprints to Dr Kenneth L Jones,
Department of Pediatrics, University Hospital
H–814-B, 225 West Dickinson Street, San Diego,
California 92103, USA.

Anal atresia and the Klein-
Waardenburg syndrome

SUMMARY A 3-month-old male infant with
type I Klein–Waardenburg syndrome with an
imperforated anus and a perineal fistula is
reported. The possible association of this
gastrointestinal malformation with the KW
syndrome is discussed.

The most common form of the Klein–Waardenburg
(KW) syndrome is characterised by lateral displace-
ment of the medial canthi and lacrimal punctae.\(^1\) The

Received for publication 1 July 1980
KW syndrome type I is inherited as an autosomal dominant disorder with varying penetrance and expressivity. The purpose of this brief report is to call attention to a previously undescribed anomaly, anal atresia, which may be associated with this syndrome.

Case report

A 3-month-old male infant was referred to us because of a 2-week history of constipation accompanied by mild rectal bleeding. The parents were consanguineous Oriental Jews, originating from Iraq (fig 1). The child was born at term after a normal pregnancy and delivery. Apgar score at one minute was 9. Birth weight was 3620 g. There were no perinatal or neonatal difficulties and the baby was discharged from the nursery in good condition.

Upon physical examination, the child appeared to be an alert infant with a weight of 6100 g (75th centile), a length of 63 cm (90th centile), and a head circumference of 41 cm (75th centile).

The main physical findings included lateral displacement of the medial canthi and lacrimal punctae, broad nasal root, hypoplastic nasal alae, right preauricular sinus, cupid-bow configuration of the upper lip (fig 2a, b), areas of vitiligo and hyperpigmentation of the skin about the abdomen, perineum, and left leg, and clinodactyly of the fifth finger of the left hand. A white forelock was absent. Examination of the perineum revealed an imperforate anus with an anal dimple and a perineal fistula situated 1 cm anteriorly (fig 2c). Chromosomal analysis showed a normal male karyotype. Intravenous pyelography showed no urological anomalies. Barium enema confirmed the presence of perineal fistula and rectal atresia and showed agenesis of the fifth sacral vertebra and the coccyx (fig 2d). The infant was treated with mineral oil and passed stools daily without difficulty. He was then referred to the Department of Pediatric Surgery. An audiogram done at 4 months of age showed no definite hearing impairment and it is planned to repeat this examination when the child is older.

FIG 1 Family pedigree.

FIG 2. (a) (b) The proband. Note the lateral displacement of the medial canthi, broad nasal root, hypoplastic alae, and cupid-bow configuration of the upper lip; (c) imperforate anus with an anal dimple and a perineal fistula; (d) radiograph showing rectal atresia and agenesis of the fifth sacral vertebra and coccyx.
Discussion

The KW syndrome was diagnosed in our patient on the basis of presence of such classic features as lateral displacement of the medial canthi and lacrimal punctae, broad nasal root, hypoplastic nasal alae, cupid-bow configuration of the upper lip, and areas of skin hyperpigmentation and vitiligo.

Despite the fact that our proband’s parents were consanguineous, we believe that he has type I KW syndrome which is transmitted as an autosomal dominant disorder and as such he represents a new mutation.

The most frequently observed gastrointestinal malformation known to be associated with the KW syndrome is aganglionic megacolon (Hirschsprung disease). The clinical association between the KW syndrome and aganglionic megacolon fits well with the general hypothesis that this syndrome results from a defect in migration of the neural crest cells.

This case report represents the first description of a patient with the KW syndrome type I with anal atresia. His other malformations, consisting of agenesis of the fifth sacral vertebra and coccyx, are frequently observed in patients with various types of anorectal malformation. In 1978, Pinsky reviewed the syndromology of the various anorectal malformations (atresia, stenosis, ectopia) and no mention was made of an association of any of these with the KW syndrome. However, it should be noted that these anal malformations are relatively rare (1:10,000) and perhaps such an association has been overlooked.

Fisch, in 1959, reported on one patient with the KW syndrome who had oesophageal atresia.

At present it is not possible to state that either anal or oesophageal atresia is aetiological linked with the KW syndrome as is aganglionic megacolon. Future clinical observations regarding atretic lesions of the gastrointestinal tract and the KW syndrome will aid in clarifying this question.

J Nutman, I Nissenkorn, I Varsano, M Mimouni, and R M Goodman
Departments of Pediatrics B and Ophthalmology, Beilinson Medical Center, Petah-Tiqva; and the Department of Human Genetics, Chaim Sheba Medical Center, Tel Hashomer, Israel

References

Requests for reprints to Dr J Nutman, Department of Pediatrics B, Beilinson Medical Center, Petah-Tiqva, Israel.