Gonadal dysgenesis in a patient with an X;3 translocation: case report and review

NANCY J CARPENTER, BURHAN SAY, AND DAVID BROWNING

From the Children's Medical Center, University of Tulsa, and Tulsa Medical College, University of Oklahoma, Tulsa, Oklahoma, USA

SUMMARY A patient with primary amenorrhoea and absence of secondary sex characteristics was found to have a balanced X;3 translocation. This phenotype is reported in approximately one-third of the balanced X;autosome translocation cases. The normal X chromosome is inactive in the present case which is in agreement with most of the similar cases. A review of the 66 balanced X;autosome translocations reported to date is presented.

Up to mid 1979, 102 cases of balanced and unbalanced X;autosome translocations have been the subjects of 53 reports. These cases have provided information on the patterns of inactivation of the X chromosome and on the relative position of various loci on this chromosome. Associated with these chromosomal rearrangements are a variety of clinical findings including amenorrhoea, hypogonadism, and multiple congenital anomalies and mental retardation (MCA–MR) in the majority of the balanced carriers and MCA–MR syndromes in the unbalanced carriers.

We present a patient with a balanced de novo X;3 translocation. A review of the phenotypes and patterns of X inactivation in patients with balanced X;autosome translocations reveals the complexities of X chromosome inactivation.

Case report

A 17-year-old girl was referred for primary amenorrhoea and lack of secondary sex characteristics. During a laparoscopy, bilateral streak gonads and a markedly hypoplastic uterus were noted. A normal vagina and cervix were present and no abnormalities of the external genitalia were observed. The serum follicle stimulating hormone (FSH) level was greater than 100 mouse uterine units/24 h and the luteinising hormone (LH) level was 36 mIU/ml at the age of 14. Repeat gonadotrophin levels at the age of 15 gave values of greater than 100 mouse uterine units/24 h for FSH and 59 mIU/ml for LH. Her weight and height were 37 kg and 156 cm, respectively.

Received for publication 20 July 1979

The patient has three sisters, all of whom have had normal sexual development. There is no family history of similar developmental disorders. There was no consanguinity between the parents. The ages of the mother and father at the time of the patient's birth were 33 and 35 years, respectively.

A buccal smear was 24% positive for sex chromatin. The Barr bodies appeared normal in size. Karyotype analysis from peripheral blood revealed a balanced X;3 translocation (fig 1). The G banded karyotype was 46,X,t(X;3)(Xpter→Xq22::3p11→3pter;3qter→3p11::Xq22→Xqter). Fig 2 illustrates the breakpoints in the long arm of the X chromosome and the short arm of chromosome 3. Using the BUdR terminal pulse technique followed by staining with acridine orange, the normal X chromosome was identified as late replicating in all of the 49.
metaphases analysed. The karyotypes of the parents were normal.

Dermatoglyphic analysis of the proband showed an essentially normal pattern with a total finger ridge count of 138. Gene marker studies including red cell antigens, Xg*, and 20 selected enzymes on the proband and her parents were not informative.

Discussion

X;autosome translocations have been reported involving each of the autosomes except for chromosomes 10 and 11, and a large number of breakpoints on the X chromosome and the autosomes have been identified. Carriers of unbalanced translocations present with MCA-MR syndromes reflecting the partial aneuploidy of the autosomal segments involved and the X inactivation pattern. The balanced translocation carriers express different phenotypes ranging from clinically normal females to those with MCA-MR syndromes. In the patients with MCA-MR syndromes, a position effect or spreading of inactivation over the autosomal loci involved may be the underlying cause. A review of the 66 balanced translocation cases included in the 45 reports to date is given in the table. Seventeen of these patients, including the case reported here, had primary amenorrhoea. In two separate studies, a total of 150 women with primary amenorrhoea were identified and two were found to have X;autosome translocations (1.3%). However, a report of 429 women with primary amenorrhoea including these two cases gave an incidence of 0.5%. Two hypotheses have been proposed to explain the gonadal dysfunction observed in such patients: (1) the effective hemizygosity of a recessive gene inhibiting gonadal development as a result of inactivation of one X chromosome, and (2) the breakage or deletion of a gene for gonadal development as a result of translocation. Sarto et al identified a 'critical region' for such loci from approximately Xq21 to Xq25. Summitt and associates propose extending the boundaries of this region to Xq13 and Xq27.

Patterns of X inactivation in these cases have been shown by terminal pulsing of chromosome cultures with 3H thymidine or bromodeoxyuridine (BUDR) before autoradiography or differential staining with acridine orange. Therman et al proposed that an X inactivation centre on the proximal part of Xq is essential for inactivation of any X chromosome. In cases of balanced X;autosome translocations, the normal X is usually found to be late replicating (inactive) as in the present case. A few exceptions have been reported in which the X portion of the translocated chromosome, or the entire translocated X, is late replicating. It is not known whether there is preferential inactivation of the normal X chromosome or random inactivation followed by selective survival of cells in which the translocated X remains active. Inactivation usually results in the least genetic imbalance and thus the expression of the mildest phenotypic effects. However, the exceptional case reported by Thelen et al in which the patient expressed the characteristics of the 18q− syndrome through inactivation of the translocated autosomal as well as the X chromosomal segment points out the unpredictability of this phenomenon.

During genetic counselling of fertile balanced...
<table>
<thead>
<tr>
<th>Authors</th>
<th>Kawasaki type</th>
<th>Last replicating chromosome</th>
<th>BL/GD</th>
<th>Synonym</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nielsen et al.</td>
<td>DtoY</td>
<td>Xn</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Nielsen et al.</td>
<td>DtoY</td>
<td>Xn</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Nielsen et al.</td>
<td>DtoY</td>
<td>Xn</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Nielsen et al.</td>
<td>DtoY</td>
<td>Xn</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Nielsen et al.</td>
<td>DtoY</td>
<td>Xn</td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Note: The table is not fully visible in the image, but it appears to be a summary of replication patterns and phenotypes in balanced X-autosome translocations.

Table Legend:
- **Authors:** Authors of the studies.
- **Kawasaki type:** Type of Kawasaki disease.
- **Last replicating chromosome:** Last chromosome involved in the translocation.
- **BL/GD:** Band localization or genetic disorder.
- **Synonym:** Synonyms for the condition.
- **Mentions:** Number of mentions in the study.
TABLE—continued

<table>
<thead>
<tr>
<th>Authors</th>
<th>Karyotype as defined by authors</th>
<th>Late replicating chromosome</th>
<th>Autoradiography</th>
<th>BUdR</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson et al[14]</td>
<td>46,X,t(X;3)(q26;7)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Normal</td>
</tr>
<tr>
<td>Phelan et al[15]</td>
<td>46,X,rcp(X;4)(q26;q21)</td>
<td>Xn</td>
<td>—</td>
<td>—</td>
<td>Secondary amenorrhea, streak gonads, hypogonadism</td>
</tr>
<tr>
<td>Sarto et al[16]</td>
<td>46,X,t(X;7)(q21;p22)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Secondary amenorrhea, underdeveloped ovaries</td>
</tr>
<tr>
<td>Sauer et al[17]</td>
<td>46,X,t(X;15)(q13;p12)</td>
<td>Xn</td>
<td>—</td>
<td>—</td>
<td>Primary amenorrhea</td>
</tr>
<tr>
<td>Sujansky et al[18]</td>
<td>46,X,t(X;21)(q11;p11)</td>
<td>Xn</td>
<td>—</td>
<td>—</td>
<td>Normal</td>
</tr>
<tr>
<td>Thelen et al[40]</td>
<td>46,X,t(Xp+;18q−)</td>
<td>Xn</td>
<td>—</td>
<td>—</td>
<td>Primary amenorrhea, streak gonads, hypoplastic genitalia, 'eunuchoid habitus'</td>
</tr>
<tr>
<td>Thorburn et al[41]</td>
<td>46,X,t(Xq:3q−)</td>
<td>Xn</td>
<td>—</td>
<td>—</td>
<td>Primary amenorrhea, streak gonads, hypoplastic genitalia, 'eunuchoid habitus'</td>
</tr>
<tr>
<td>Tipton cited in Leisti et al[23]</td>
<td>46,X,rcp(X;8)(q26;q12)</td>
<td>Xn</td>
<td>—</td>
<td>—</td>
<td>Normal</td>
</tr>
<tr>
<td>Van Der Hagen and Molne[43]</td>
<td>46,X,t(X;1)(q24;p36)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Primary amenorrhea, streak gonads, delayed secondary development</td>
</tr>
<tr>
<td>Van Dyke et al[44]</td>
<td>46,X,t(X;12)(q22;p24)</td>
<td>—</td>
<td>Xn</td>
<td>—</td>
<td>Gonadal dysgenesis</td>
</tr>
<tr>
<td>Verellen et al[45]</td>
<td>46,X,t(X;12)(p21;p12)</td>
<td>Xn</td>
<td>—</td>
<td>—</td>
<td>Duchenne muscular dystrophy</td>
</tr>
<tr>
<td>Zabel et al[46]</td>
<td>46,X,t(X;15)(p22;q15)</td>
<td>—</td>
<td>Xn</td>
<td>—</td>
<td>Normal</td>
</tr>
<tr>
<td>Zabel et al[46]</td>
<td>46,X,t(X;21)(p11;p11)</td>
<td>—</td>
<td>Xn</td>
<td>—</td>
<td>Multiple congenital abnormalities, mental retardation</td>
</tr>
<tr>
<td>This report</td>
<td>46,X,t(X;3)(q22;p11)</td>
<td>—</td>
<td>Xn</td>
<td></td>
<td>Primary amenorrhea, streak gonads, absence of secondary sexual development</td>
</tr>
</tbody>
</table>
X-autosome translocation carriers, the risk of having unbalanced offspring with multiple congenital anomalies should be emphasised. The parents of patients with reproductive failure and de novo translocations, however, can be counselled with confidence that the risk of recurrence of the same abnormality in other female family members is remote.

We thank Dr Robert S Sparkes for the gene marker studies and Sandy Quay, Gaurang Munshi, and Katy Jones for technical assistance. This study was supported by Medical Services Grant C-261 from the National Foundation—March of Dimes.

References

Nancy J Carpenter, Burhan Say, and David Browning

31. Palmer CG, Weaver DD, Hubbard T, Henry W. Partial trisomy 17 resulting from t(X;17) with failure of inactivation of the translocated segment of the inactive X. Am J Hum Genet 1978;30:89A.
Gonadal dysgenesis in a patient with an X;3 translocation: case report and review

49 Therman E, Sarto GE, Patau K. Center for Barr body condensation on the proximal part of the human Xq: a hypothesis. Chromosoma 1974;44:361-6.

Requests for reprints to Dr Burhan Say, Children’s Medical Center, PO Box 35648, 5300 E Skelly Drive, Tulsa, Oklahoma 74135, USA.