Book Reviews

INDEX TO VOLUME I

ANDERS, J. M., see JOSEPH, M. C., et al.
Aortic stenosis, family study, 2
Ascites, chylous, in heterozygous ragged (Ra +) newborn mice, 10


BONHAM CARTER, R. E., see ZOEITHOUT, H. E., et al.

Book Reviews

CLARKE, C. A.: Genetics for the clinician, 2nd ed., 1964, 151


LEWIS, K. R., and JOHN, B.: The matter of Mendelian heredity, 1964, 152

Blood groups in the Philippines, 107
BUCKTON, K. E., see COURT BROWN, W. M., et al.

CARTER, C. O., see ZOEITHOUT, H. E., et al.
Chromatin, sex, see Sex chromatin
Chromosomes, sex, see Sex chromosomes

CLARKE, G., STEVENSON, A. C., DAVIES, P., and WILLIAMS, C. E.: A family apparently showing transmission of a translocation between chromosomes 3 and one of the 'X-6-12' or 'C' group, 27: Corrigenda, 153

Configurations, dermal ridge, 32

COURT BROWN, W. M., MANTLE, D. J., BUCKTON, K. E., and TOUGH, I. M.: Fertility in an XY/XXY male married to a translocation heterozygote, 35

DAIKOS, G. K., see HADIDAKIS, S. G., et al.
DAVIES, P., see CLARKE, G. E., et al.
Deafness, profound childhood, review article, 118
Diabetes in one monozygotic twin, idiocy in the other, 88
Down's syndrome in Nigerian children, 115
Dysostosis, cranio-facial, and malformation of feet, 112
Dystrophy, muscular, see Muscular dystrophy
Feet, malformation, and cranio-facial dysostosis, 112
Fertility, in an XY/XXY male married to a translocation heterozygote, 35
Fingerprints, quadratic discriminant of zygosity from, 42, see also Hand
FRASER, G. R.: Profound childhood deafness, review article, 118
— see also SORSBY, A., and FRASER, G. R.
FRIEDMANN, A. I., see ROSE, F. CLIFFORD, and FRIEDMANN, A. I.
GIBLETT, E. R., see FRASER, G. R., et al.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, thalassaemia, and abnormal haemoglobins in the Philippines, 102
Goitre, endemic, Greece, family studies, 82
Haemoglobin(s), abnormal, thalassaemia and G6PD deficiency, in the Philippines, 102
— foetal, hereditary persistence of, and interaction of β-thalassaemia, 24
Hand, dermal ridge configuration, 32
HASAN, M. I., see BIRD, G. W. G., et al.
HERBERTSON, B. M., and WALLACE, M. E.: Chylous ascites in newborn mice, 10
Heterozygote, translocation, fertility in an XY/XXY male married to, 35
HOLT, S. B.: A note on the dermal ridge configurations, 32
Idiocy in one twin, diabetes in the other, 88
JOHNSTON, H. A.: Severe muscular dystrophy in girls, 79
JOSEPH, M. C., ANDERS, J. M., and TAYLOR, A. I.: A boy with XXXXY sex chromosomes, 95
KOUTRAS, D. A., see HADJIDAKIS, S. G., et al.
Leber’s disease, chromosomal pattern, 110
LEHMANN, H., see BIRD, G. W. G., et al.
McDONALD, A. D.: Mongolism in twins, 39
MALHOTRA, O. P., see BIRD, G. W. G., et al.
MANTLE, D. J., see COURT BROWN, W. M., et al.
Mice, heterozygous ragged (Ra +), newborn, chylous ascites in, 10
MITTWOCH, U.: Sex chromatin, review article, 50
Mongolism in twins, 39
MOTULSKY, A. G., STRANSKY, E., and FRASER, G. R.: Glucose-6-phosphate dehydrogenase (G6PD) deficiency, thalassaemia, and abnormal haemoglobins in the Philippines, 102
— see also FRASER, G. R., et al.
Muscular dystrophy, severe, in girls, 79
Nigerian children, Down’s syndrome in, 115
PARKER, N.: Discordance in monozygotic twins: one diabetic, the other an idiot with neurological abnormalities, 88
PATTERSON, T. J. S., and STEVENSON, A. C.: Cranio-facial dysostosis and malformation of feet, 112
Philippines, blood groups in, 107
— G6PD deficiency, thalassaemia, and abnormal haemoglobins in, 102
Refraction, ocular, components in twins, statistical note, 47
REVIEW ARTICLES
Sex chromatin, review article, 50
Sex chromosome(s), XXXY, boy with, 95
— — XY/XXXY, male, fertility in, married to translocation heterozygote, 35
— — chromosome 3, and one of the ‘X-6-12’ (or ‘C’ group), family apparently showing transmission of a translocation between 27, Corrigenda, 151
— — Down’s syndrome in Nigerian children, 112
— — pattern in Leber’s disease, 110
SHIELDS, J., see SLATER, P., et al.
SLATER, E., see SLATER, P., et al.
SLATER, P., SHIELDS, J., and SLATER, E.: A quadratic discriminant of zygosity from fingerprints, 42
SORSEY, A.: Editorial, 1
— and FRASER, G. R.: Statistical note on the components of ocular refraction in twins, 47
STEVenson, A. C., see CLARKE, G., et al.
— see also PATTERSON, T. J. S., and STEVENSON, A. C.
STRANSKY, E., see FRASER, G. R., et al.
— see also MOTULSKY, A. G., et al.
TAYLOR, A. I., see JOSEPH, M. C., et al.
Thalassaemia, G6PD deficiency and abnormal haemoglobins in the Philippines, 102
— β, interaction of, and hereditary persistence of foetal haemoglobin, 24
TOMPKINS, A. B.: Down’s syndrome in Nigerian children, 115
TOUGH, I. M., see COURT BROWN, W. M., et al.
Twins, components of ocular refraction in, statistical note, 47
— — mongolism in, 39
— — monogyzotic, discordance, one diabetic, the other an idiot with neurological abnormalities, 88
— — quadratic discriminant of zygosity from fingerprints, 42
WALLACE, M. E., see HERBERTSON, B. M. and WALLACE, M. E.
WILLIAMS, C. E., see CLARKE, G., et al.
ZOETHOUT, H. E., BONHAM CARTER, R. E., and CARTER, C. O.: A family study of aortic stenosis, 2
Zygosity, quadratic discriminant, from fingerprints, 42
Book Reviews

ВВЕДЕНИЕ В МЕДИЦИНСКУЮ ГЕНЕТИКУ.

The title 'Introduction to Medical Genetics' does not do justice to Dr Efroimson's remarkable book. In fact, medical genetics, in its strictly limited sense, forms only a part of the subject matter studied, and many chapters, reflecting the author's own interests, contain material that can only be found with difficulty in other textbooks of medical or human genetics; for example, the genetics of disease resistance and immunity, of carcinogenesis, and of radiation disease. A lengthy introductory chapter effectively presents human genetics as occupying a unique and important place in the wider context of general genetics; and relevant discoveries and hypotheses ranging from those of Mendel to those of recent workers are fully discussed.

Apart from being a competent survey of the more usual aspects of medical genetics, including chromosomal aberrations, inborn errors of metabolism, blood and serum groups, the study of twins and genetic counselling, this book deals in a novel and refreshing way with such subjects as population genetics and balanced polymorphism: thus under the heading of 'geno-geography' the hypothesis of malarial selection in relation to polymorphisms affecting the red blood cells is extensively discussed in the wider context of the evolution of immunity.

After being in the forefront of medical genetics under the guidance of Professor S. G. Levit in the period 1932-7, the U.S.S.R. has, until recently, neglected this field (if the work of Davidenkov in Leningrad on neurological genetics is excepted). In consequence, large sections of this book are based on an up-to-date appreciation of non-Russian literature. There is also a good account of the development of human genetics in the U.S.S.R.; the work of the golden years of Professor Levit's Maxim Gorki Institute of Medical Genetics in Moscow is discussed at length. It is unfortunate that the Proceedings of this Institute are extremely difficult to obtain in this country though happily some of the more outstanding papers, including several on human chromosomes, are available in translation. In view of the fact that 9,500 copies of this new book have been printed, it is clear that medical genetics is now being seriously studied once again in the U.S.S.R., and it is to be hoped that the results of these fresh beginnings will be more readily available to the outside world.

Some minor variations in Russian usage are apparent. Down's syndrome had been used to describe trisomy 21 in the U.S.S.R. for very many years before attempts were made to replace the term mongolism with this eponym elsewhere. Turner's syndrome is known as the syndrome of Shereshevski-Turner. Shereshevski's original paper of 1925 is unobtainable in this country but a translation exists (Rev. Franç., Endocr., 1926, 4, 181). There can be little doubt that the girl reported in this paper in fact does correspond to the cases more fully described in 1938 by Turner. No documentation for the claim of the Russian partner in the 'syndrome of Wilson-Konovalov' is provided.

This book eschews the heterodox approach of Russian genetics of recent years and is virtually free of polemic. Its publication, and that of the handbook Humangenetik and other recent textbooks from Germany, suggest that, after a period of uncertainty, the basis and methodology of human genetics is now again critical in spirit and international in scope.

G. R. Fraser

Corrigenda
to the issue of December 1964 (Vol. 1, No. 2)

Article by Joseph et al.
p. 100. Table A. To be replaced by the following:

TABLE A

<table>
<thead>
<tr>
<th>Name</th>
<th>ABO</th>
<th>MNSs</th>
<th>P1</th>
<th>Rh</th>
<th>Lu+</th>
<th>K</th>
<th>Le+</th>
<th>Fy+</th>
<th>Xg+</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.A.</td>
<td>B</td>
<td>Ms/Ms</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Mrs. A</td>
<td>A1</td>
<td>Na/Na</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Mr. A</td>
<td>B</td>
<td>MS/Ms</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

p. 101. Figs. A and B were transposed.

Review article by G. R. Fraser.
p. 145. Table. The first two percentages were accidentally transposed. They were 3.0 and 7.5, respectively.

Index.