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Abstract
Background  Inflammatory processes contribute to the 
pathophysiology of multiple chronic conditions. Genetic 
factors play a crucial role in modulating the inflammatory 
load, but the exact mechanisms are incompletely 
understood.
Objective  To assess genetic determinants of 16 
circulating cytokines and cell adhesion molecules 
(inflammatory phenotypes) in Finns.
Methods  Genome-wide associations of the 
inflammatory phenotypes were studied in Northern 
Finland Birth Cohort 1966 (N=5284). A subsequent 
meta-analysis was completed for 10 phenotypes 
available in a previous genome-wide association 
study, adding up to 13 577 individuals in the study. 
Complementary association tests were performed to 
study the effect of the ABO blood types on soluble 
adhesion molecule levels.
Results  We identified seven novel and six previously 
reported genetic associations (p<3.1×10−9). Three loci 
were associated with soluble vascular cell adhesion 
molecule-1 (sVCAM-1) level, one of which was the 
ABO locus that has been previously associated with 
soluble E-selectin (sE-selectin) and intercellular adhesion 
molecule-1 (sICAM-1) levels. Our findings suggest that 
the blood type B associates primarily with sVCAM-1 
level, while the A1 subtype shows a robust effect on sE-
selectin and sICAM-1 levels. The genotypes in the ABO 
locus associating with higher soluble adhesion molecule 
levels tend to associate with lower circulating cholesterol 
levels and lower cardiovascular disease risk.
Conclusion  The present results extend the knowledge 
about genetic factors contributing to the inflammatory 
load. Our findings suggest that two distinct mechanisms 
contribute to the soluble adhesion molecule levels in the 
ABO locus and that elevated soluble adhesion molecule 
levels per se may not increase risk for cardiovascular 
disease.

Introduction
It is currently established that inflammatory load 
may play a role in the aetiology of autoimmune 
and infectious diseases, but also in a broad range 
of other diseases, such as chronic cardiometabolic 
disorders,1 neurodegenerative diseases2 and cancer.3 

The risk for these diseases increases with age,4 and 
due to the world’s ageing population5 their preva-
lence is likely to expand. Moreover, these diseases 
often co-occur, which is likely due to shared inflam-
mation-related pathophysiology.6

Inflammation is the body’s physiological response 
to harmful stimuli involving multiple molecular and 
cellular interactions attempting to restore distur-
bances in tissue or systemic homeostasis. Circu-
lating cytokines, growth factors, chemokines and 
cell adhesion molecules (CAMs) (hereafter inflam-
matory phenotypes) are fundamental mediators 
of inflammatory responses. Genes encoding these 
molecules and their receptors play a crucial role in 
mediating the related functions. Previous studies 
have identified loci associating with levels of inflam-
matory phenotypes,7–9 but the understanding of the 
exact regulatory mechanisms is still incomplete.

To add insights into the genetic mechanisms 
contributing to the inflammatory load, we performed 
a genome-wide association study (GWAS) of 16 
circulating inflammatory phenotypes in 5284 indi-
viduals from Northern Finland Birth Cohort 1966 
(NFBC1966) and a subsequent meta-analysis of 
10 phenotypes in three other Finnish population 
cohorts,7 adding up to a total of 13 577 individuals in 
the study. We report identification of seven novel and 
replication of six loci associating with levels of the 
circulating inflammatory markers.

Methods
Study populations, genotyping and inflammatory 
phenotype quantification
Northern Finland Birth Cohort 1966
The NFBC1966 comprises 96% of all births during 
1966 in the two northernmost provinces in Finland; 
altogether 12 058 children were live-born into the 
cohort, and the follow-ups occurred at the ages of 
1, 14, 31 and 46 years.10 The data analysed in the 
present study are from the 31 years’ follow-up when 
clinical examinations and blood sampling were 
completed for altogether 6033 individuals, 5284 of 
whom had body mass index (BMI), inflammatory 
phenotypes and genotype data available (a maximum 
number of individuals per inflammatory marker of 
5100). Genotyping of the samples was completed 
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using 370 k Illumina HumanHap arrays (Illumina, California, 
USA), and subsequent imputation was performed based on the 
1000 Genomes reference panel. A total of 16 inflammatory pheno-
types were quantified from overnight fasting plasma samples using 
Bio-Rad’s Bio-Plex 200 system (Bio-Rad Laboratories, California, 
USA) with Milliplex Human Chemokine/Cytokine and CVD/Cyto-
kine kits (Cat# HCYTOMAG-60K-12 and Cat# SPR349; Milli-
pore, St Charles, Missouri, USA) and Bio-Plex Manager Software 
V.4.3 as previously described.11 The 16 inflammatory phenotypes 
studied in the NFBC1966 were interleukin (IL) 1-alpha, IL1-beta 
(IL1β), IL4, IL6, IL8, IL17, IL1 receptor antagonist (IL1ra), inter-
feron gamma-induced protein 10 (IP10), monocyte chemoattrac-
tant protein 1 (MCP1), tumour necrosis factor alpha (TNFα), 
vascular endothelial growth factor (VEGF), plasminogen activator 
inhibitor 1, soluble CD40 ligand, soluble E-selectin (sE-selectin), 
soluble intercellular adhesion molecule-1 (sICAM-1) and soluble 
vascular cell adhesion molecule 1 (sVCAM-1).

GWAS summary statistics from three Finnish population cohorts
Meta-analyses were conducted for 10 phenotypes available in a 
previous GWAS.7 The study included up to 8293 Finnish individ-
uals from the Cardiovascular Risk in Young Finns Study (YFS)12 
and FINRISK (​www.​thl.​fi/​finriski),13 adding up to 13 577 individ-
uals studied in the present meta-analyses. Shortly, YFS is a popu-
lation-based follow-up study started in 1980 comprising randomly 
chosen individuals from Finnish cities Helsinki, Kuopio, Tampere, 
Oulu and Turku. The YFS data included in the previous GWAS 
are from 2019 individuals who participated in the follow-up in 
2007 and who had both inflammatory phenotype and genotype 
data available. FINRISK is a Finnish population survey conducted 
every 5 years to monitor chronic diseases and their risk factors. 
The surveys use independent, random and representative samples 
from different geographical areas of Finland. The data included 
in the present meta-analyses were from participants of the 1997 
and 2002 surveys. Genotypes were obtained using 670 k Illu-
mina HumanHap arrays (Illumina) and imputed based on 1000 
Genomes reference panel. Inflammatory markers were quantified 
using Bio-Rad’s premixed Bio-Plex Pro Human Cytokine 27-plex 
Assay and 21-plex Assay, and Bio-Plex 200 reader with Bio-Plex 
V.6.0 software (Bio-Rad Laboratories) as previously described.14 
Samples were serum in YFS, EDTA plasma in FINRISK1997 and 
heparin plasma in FINRISK2002.

Statistical analyses
GWAS and meta-analysis
To allow meta-analysis between the present results and the 
previous GWAS, the data processing and analysis model were 
done according to Ahola-Olli et al.7 First, rank-based inverse 
transformation was applied to normalise the phenotypes. 
Preceding the analyses, linear regression models were fitted to 
adjust the transformed inflammatory phenotypes for age, sex, 
BMI and the 10 first genetic principal components to control 
for population stratification. The resulting residuals were again 
normalised with inverse transformation, and the adjusted and 
transformed residuals were used as phenotypes in the analyses.

Genome-wide association tests were performed using snptest 
V.2.5.1 software.15 Allele effects were estimated using an addi-
tive model (-frequentist 1), and the option to centre and scale 
the phenotypes was disabled (-use_raw_phenotypes). The GWAS 
results were filtered by including markers with model fit info >0.8 
and minor allele count >10. Filtered data were used to perform 
meta-analyses by METAL software (V.2011-03-25)16 for the 10 
phenotypes (IL1β, IL1ra, IL4, IL6, IL8, IL17, IP10, MCP1, TNFα 

and VEGF) available in the previous GWAS.7 Genomic control 
correction was enabled (GENOMICCONTROL ON) to account 
for population stratification and cryptic relatedness. To estimate 
the heterogeneity of effect sizes between NFBC1966 and the 
previous GWAS, calculation of heterogeneity statistics based on 
Cochrane’s Q-test was enabled (ANALYZE HETEROGENEITY).

Supplemental genome-wide tests in NFBC1966
Individuals showing symptoms of an acute infection were 
omitted from the supplemental genome-wide tests performed in 
the NFBC1966 population. Here, individuals reported having 
fever at the time of the blood sampling and individuals having 
C-reactive protein (CRP) level >10 mg/L were excluded. Other-
wise the analysis models were as above.

Conditional analyses and variance explained
To assess whether the identified loci harbour multiple independent 
association signals, we conducted conditional analyses by further 
adjusting the models with the locus-specific lead variants. The 
association tests were repeated within a 2 Mb window around the 
lead SNP for the phenotypes studied in the NFBC1966 popula-
tion only. For the meta-analysed phenotypes, we applied a method 
proposed by Yang et al17 that enables conditional analyses of GWAS 
summary statistics. NFBC1966 was used as a reference sample to 
estimate linkage disequilibrium (LD) corrections in these analyses. 
The proportion of variance explained was calculated using all inde-
pendent variants using the following formula:

	﻿‍
Variance explained =

(
βx

√
2 x MAF

(
1−MAF

))2
‍�

Here β is the variant’s effect estimate on the inflammatory 
phenotype and MAF denotes minor allele frequency.

Complementary association tests on soluble adhesion molecule 
levels
Complementary association tests were conducted to better eval-
uate the molecular mechanism explaining the two potentially inde-
pendent association signals with soluble CAM levels in the ABO 
locus. Here, linear models were repeated within a 2 Mb window 
and further adjusted for the ABO blood type or rs507666 geno-
type tagging the A1 subtype.18 In addition, we determined the 
effect estimates of ABO blood types and ABO blood types strati-
fied by rs507666 genotype on sE-selectin, sICAM-1 and sVCAM-1 
levels: the adjusted and transformed CAM concentrations were 
as outcomes in the linear models and ABO blood types as cate-
gorical variables (individuals with blood type A vs non-A, and so 
on). Corresponding models were fitted for the rs507666-stratified 
blood types (individuals with blood type A and rs507666 G/G vs 
others, and so on).

Shared genetic influences on inflammatory and cardiovascular 
phenotypes
As previous evidence suggests that elevated concentrations of 
circulating markers of inflammation increase the risk of cardio-
vascular diseases (CVD),19 20 we further evaluated how variants in 
the loci associating with inflammatory phenotypes may relate to 
other cardiovascular traits. We used the gwas-pw method devel-
oped by Pickrell et al21 that estimates whether a locus harbours a 
genetic variant influencing one of the two phenotypes compared 
(models 1 and 2), if the same variant influences both phenotypes 
(model 3), or if separate variants within a locus influence the two 
phenotypes (model 4). Using the gwas-pw and open-access data 
provided by CARDIoGRAM,22 MEGASTROKE consortium23 and 

 on A
pril 23, 2024 by guest. P

rotected by copyright.
http://jm

g.bm
j.com

/
J M

ed G
enet: first published as 10.1136/jm

edgenet-2018-105965 on 19 June 2019. D
ow

nloaded from
 

www.thl.fi/finriski
http://jmg.bmj.com/


3Sliz E, et al. J Med Genet 2019;0:1–10. doi:10.1136/jmedgenet-2018-105965

Complex traits

Table 1  Basic characteristics of the Northern Finland Birth Cohort 
1966 study population

Characteristics

Total number of individuals 5284

Number of men (%) 2543 (48.1)

Age, years 31.1±0.4

Body mass index, kg/m2 24.4±4.0

Glucose, mmol/L 5.1±0.7

Low-density lipoprotein-cholesterol, mmol/L 3.0±0.9

High-density lipoprotein-cholesterol, mmol/L 1.6±0.4

Systolic blood pressure, mm Hg 124.2±13.6

Diastolic blood pressure, mm Hg 76.8±11.7

Values are mean±SD.

Global Lipids Genetics Consortium,24 we evaluated the shared 
genetic determinants of circulating levels of low-density lipopro-
tein cholesterol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C), total cholesterol (TotC) and total triglycerides (TG), as 
well as risk of coronary artery disease (CAD), ischaemic stroke and 
the inflammatory phenotypes showing significant genetic associ-
ations in the present study. The genome breakpoint data set for 
individuals with European ancestry provided at https://​bitbucket.​
org/​nygcresearch/​ldetect-​data was used in the gwas-pw analyses to 
split the genome into approximately independent blocks.25

Results
The basic characteristics of the NFBC1966 study population are 
provided in table 1. Inflammatory phenotype distributions are 
tabulated in online supplementary table S1, and their correlation 
structure is shown in online supplementary figure S1. Using a 
threshold of p<3.1×10−9 for statistical significance (standard 
genome-wide significance level p<5×10−8 corrected for 16 
phenotypes tested), we identified seven novel and six previously 
reported loci associating with one or more of the inflammatory 
phenotypes. The results are summarised in table 2 and combined 
Manhattan plots are shown in figure  1. Manhattan plots and 
Q-Q plots for each inflammatory phenotype are provided in 
online supplementary figure S2 A–Z. Genomic inflation factor 
values range between 0.99 and 1.02, suggesting no inflation in 
the test statistics (online supplementary table S2). Online supple-
mentary table S3 lists the traits associated previously with the 
loci showing novel associations with inflammatory phenotypes 
in the present study.

Cell adhesion molecules
The ABO locus shows large effects on sE-selectin, sICAM-1 and 
sVCAM-1 levels
We observed a novel effect on sVCAM-1 concentration in 9q34.2 
near ABO (ABO, alpha 1–3 n-acetylgalactosaminyltransferase and 
alpha 1–3-galactosyltransferase) in the NFBC1966 population. 
This locus showed a robust association also with sE-selectin and 
sICAM-1 concentrations as previously reported.18 26 27 Note-
worthy, the lead variant for sE-selectin and sICAM-1 associations 
(rs2519093) was different from the lead variant for sVCAM-1 
association (rs8176746). The former variant is in LD (r2=1 in 
NFBC1966) with rs507666 tagging the ABO blood type A subtype 
A1, whereas the latter variant tags the blood type B.18

As the GWAS results suggested two potentially separate asso-
ciation signals with the soluble CAM levels in the ABO locus, 
we conducted complementary association tests to better eval-
uate the molecular mechanisms explaining the associations. The 
association of the rs8176746 with sVCAM-1 concentration was 

significant when adjusted for the rs507666 indicative of the A1 
subtype (p=4.98×10−15). On the contrary, the associations of 
the rs2519093 with concentrations of sE-selectin and sVCAM-1 
were highly significant when adjusted for the ABO blood type 
(p=3.40×10−123 and p=3.43×10−17, respectively). Overall, 
these results suggest that the association of the rs8176746 with 
sVCAM-1 level is independent of the A1 subtype, while the asso-
ciation of the rs2519093 with sE-selectin and sICAM-1 levels is 
independent of the ABO blood type. Statistical significances were 
abolished when the rs8176746 association with sVCAM-1 was 
adjusted for ABO blood type and rs2519093 association with 
sE-selectin or sICAM-1 was adjusted for rs507666.

To further evaluate the related molecular mechanisms, we deter-
mined the effect estimates of the ABO blood types and ABO blood 
types stratified by rs507666 genotype on soluble CAM levels. The 
blood type A showed negative associations with the levels of all 
the three CAMs and the effect was the most robust on the sE-se-
lectin level (figure  2, left panel). However, major discrepancies 
in the effect directions were seen when the analyses were strati-
fied by the rs507666 genotype (figure 2, right panel). Congruent 
with previous reports,18 26 the present results suggest that the A1 
subtype/rs507666 influences sE-selectin or sICAM-1 levels. In 
contrast, the blood type B seems to attribute predominantly to 
sVCAM-1 level, while the A1 subtype/rs507666 shows only a 
modest effect on sVCAM-1.

HSP90B1 and ABCA8 loci associate with sVCAM-1 levels
We identified two other novel loci for sVCAM-1 (12q23.3 and 
17q24.2) in the NFBC1966 population. In chr12 the lead variant 
rs117238625 is in LD (r2=1 in NFBC1966) with rs117468318 
that locates in the 5’ untranslated region (UTR) region of HSP90B1 
(heat shock protein 90 kDa beta member 1) and, according to 
RegulomeDB,28 is likely to affect transcription factor binding. 
The association signal in chr17 locates near ABCA8 (ATP binding 
cassette subfamily A member 8) encoding one of the ATP binding 
cassette transporters.

Variations in sialyltransferase encoding genes show an effect on 
sE-selectin level
For sE-selectin level, we identified a novel association in 11q24.2 
in the region of ST3GAL4 (ST3 beta-galactoside alpha-2,3-si-
alyltransferase 4). We identified a suggestive signal with sE-se-
lectin level also in 3q12.1 near ST3GAL6 (ST3 beta-galactoside 
alpha-2,3-sialyltransferase 6), but the association was not signifi-
cant after multiple correction (p=1.75×10−08). Both of the sial-
yltransferase genes have been implicated in the production of 
functional E-selectin, P-selectin and L-selectin ligands in mice.29

Two independent association signals on sICAM-1 level near ICAM1
We replicated the previously reported association for sICAM-1 
level in 19p13.2 near ICAM1 (intracellular adhesion molecule 
1).18 30 When the primary association test was conditioned for 
the lead variant rs117960796, another significant association 
was detected (rs74428614, p=1.14×10−16) indicative of more 
than one independent variant contributing to sICAM-1 level in 
this locus.

Vascular endothelial growth factor
In the meta-analyses, we identified a novel locus 4p16.2 with a 
large effect on VEGF (β=−2.38 SD). This locus harbours genes 
EVC (EvC ciliary complex subunit 1), EVC2 (EvC ciliary complex 
subunit 2) and STK32B (serine/threonine kinase 32B). In addi-
tion, we replicated two previously reported loci associating with 
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Figure 1  The combined Manhattan plots for significant associations with inflammatory markers studied in (A) Northern Finland Birth Cohort 1966 and 
in (B) meta-analyses with three other Finnish population cohorts. Significance threshold p<3.1×10−9 derives from the standard p value limit for genome-
wide significance p<5×10−8 corrected for 16 markers examined in the present study. Novel association signals are highlighted with red font and replicated 
loci are marked with black font. sE-selectin, soluble E-selectin; IL1b, interleukin 1-beta; IP10, interferon gamma-induced protein 10; MCP1, monocyte 
chemoattractant protein 1; sICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1; TNFa, tumour necrosis 
factor alpha; VEGF, vascular endothelial growth factor.
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Figure 2  The effects of the ABO blood types and the A1 subtype on 
soluble adhesion molecule levels. The effects of the ABO blood types 
on sE-selectin, sICAM-1 and sVCAM-1 levels were evaluated in linear 
models, where adjusted (sex, age, body mass index and the 10 first 
genetic principal components) and transformed soluble adhesion molecule 
concentrations were used as outcomes and the ABO blood type served as 
categorical variable (A vs non-A, and so on). Corresponding models were 
fitted for the ABO blood types stratified by the rs507666-A allele count 
(0, 1 or 2), where the A allele tags the ABO subtype A1 having enhanced 
glycosyltransferase activity.18 No individuals were found to have B or O 
blood type and one or more copies of the rs507666-A allele, and thus 
it was not possible to perform stratification within these blood types. 
sE-selectin, soluble E-selectin; sICAM-1, soluble intercellular adhesion 
molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1.

VEGF levels in 6p21.1 near VEGFA (vascular endothelial growth 
factor A) and in 9p24.2 near VLDLR (very-low-density lipoprotein 
receptor).7

Proinflammatory cytokines
Locus near DLEU1 shows a large effect on TNFa
We identified a novel variant with a large effect on TNFα levels 
(β=2.13 SD) in 13q14.3 near DLEU1 and DLEU7 (deleted in 
lymphocytic leukaemia 1 and 7) in the meta-analyses.

The human leukocyte antigen (HLA) locus shows a small effect on 
IL1β
A novel variant at 6p22.1 in the human leucocyte antigen locus 
associating with IL1β level was identified in the meta-analyses. 
In the conditional analyses, we observed two independent 
association signals at this locus (table  1, online supplemen-
tary figure S2J). The same locus and the same lead variant 
rs6917603 showed also a suggestive effect on IL4 level (online 
supplementary figure S2L), but the meta-analysed result was 
not significant after multiple correction (p=5.56×10−09).

Chemokines
We replicated previously reported loci near CXCL10 (C-X-C 
motif chemokine ligand 10) and ACKR1 (atypical chemokine 
receptor 1) associating with IP10 levels and with MCP1 levels, 
respectively.7

Supplemental genome-wide tests in NFBC1966
Altogether 236 individuals having fever or CRP >10 mg/L were 
excluded from the supplemental genome-wide tests performed 
in the NFBC1966 population. The results of the supplemen-
tary analyses were congruent with the original findings (online 
supplementary table S4).

Comparisons of genetic effects on inflammatory phenotypes 
versus other traits
Elevated circulating concentrations of inflammatory markers 
increase the risk for CVD.19 20 We used the gwas-pw method21 
to evaluate the presence of shared genetic determinants between 
inflammatory phenotypes showing significant genetic association 
in the present study and other cardiovascular health-related traits 
(LDL-C, HDL-C, TotC, TG, CAD risk, ischaemic stroke risk) 
obtained from open-access sources.22–24 Altogether 56 genomic 
regions showed robust statistical evidence for containing a genetic 
variant influencing one or more of the inflammatory phenotypes 
and at the same time one or more of the other traits studied (model 
3 posterior probability greater than 0.99; online supplementary 
figure S3). The ABO locus was one of the loci harbouring vari-
ants influencing multiple traits. In this locus, we observed nega-
tive linear relationships between the SNP effects on sE-selectin 
and sICAM-1 levels and CAD risk, stroke risk, as well as LDL-C, 
HDL-C and TotC levels (figure 3). The results in the other loci are 
provided in online supplementary figure S3.

Discussion
The present study examines the genetic determinants of 16 
circulating inflammatory phenotypes in 5284 individuals from 
Northern Finland with a subsequent meta-analysis of 10 pheno-
types in 3 other Finnish populations, adding up to a total of 13 
577 participants. We report seven novel and replication of six 
previously published genetic associations.

We identified a novel association for sVCAM-1 concentration 
at the ABO locus. This locus was also associated with sE-selectin 
and sICAM-1 levels as observed previously.18 26 The present GWAS 
suggested two distinct association signals in the ABO locus for 
the sE-selectin and sICAM-1 levels versus sVCAM-1 level, and 
the supplementary tests provided further support for at least two 
mechanisms contributing to circulating concentrations of CAMs 
in this locus. The two mechanisms include the blood type A 
subtype A1, which has a robust lowering effect on sE-selectin and 
sICAM-1 levels,18 26 and the blood type B which seems to have an 
increasing effect on sVCAM-1 level. The lowering effect of the A1 
subtype on sE-selectin and sICAM-1 could arise from increased 
glycosyltransferase activity that possibly modifies the shedding of 
the CAMs from the endothelium and/or their clearance rate from 
circulation.18 26 The underlying mechanism explaining the associ-
ation between the blood type B and higher sVCAM-1 concentra-
tion remains unknown and warrants research. VCAM-1-mediated 
adhesion involves interaction with galectin-3, a protein that has a 
specificity for galactosides.31 As the B antigen holds an additional 
galactose monomer compared with the A and O antigens, and 
galectins are known to recognise blood type antigens,32 it raises 
the speculation that the amount of unbound sVCAM-1 in the 
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Figure 3  SNP effects on soluble adhesion molecule levels versus other 
cardiovascular health-related traits in the ABO locus. The Pearson’s r of the 
genetic effects (Z-scores) were estimated using a set of SNPs that located 
in the ABO locus (defined as the LD block25 containing ABO gene in the 
gwas-pw21 analyses) and that were available in both the present study 
and open-access data sets.22–24 Positive correlations are indicated with red 
color, negative correlations are indicated with blue color, and correlations 
with p≥0.05 are left blank. The scatter plot representations as well as 
correlations in the other loci are shown in online supplementary figure S3. 
CAD, coronary artery disease; HDL-C, high-density lipoprotein cholesterol; 
LD, linkage disequilibrium; LDL-C, low-density lipoprotein cholesterol; 
sE-selectin; soluble E-selectin; sICAM-1, soluble intercellular adhesion 
molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1; TG, total 
triglycerides; TotC, total cholesterol.

circulation could be influenced by a possible competitive binding 
of galectin-3 with sVCAM-1 and the B antigen.

To evaluate the shared genetic mechanisms, we compared the 
correspondence of genetic effects on inflammatory phenotypes 
versus cardiovascular health-related traits. We observed a negative 
relationship between the genetic effects on CAM levels and the 
genetic effects on LDL-C and TotC levels, as well as lower risk for 
CAD and ischaemic stroke, in the ABO locus. This denotes that 
the genotypes in the ABO locus associating with higher levels of 
soluble CAMs tended to associate with lower circulating choles-
terol levels as well as lower risk of cardiovascular outcomes. This 
was unexpected since previous evidence suggests that increased 
soluble CAM levels are linked with atherosclerosis progression and 
vascular outcomes.20 33 Possible explanations unravelling the nega-
tive correlation advocate that soluble CAMs may compete with 
leucocyte adhesion to the endothelial molecules or that enhanced 
ectodomain shedding may contribute to the reduced recruitment 
of leucocytes to the subendothelial space, thereby promoting cardi-
oprotective effects.34 Our results suggesting a negative relation-
ship between the genetic effects on soluble CAM and circulating 
cholesterol levels advocate that altered cholesterol metabolism 
could contribute to the CAD risk associated with the ABO locus; 
the genetic effects of the same SNPs on LDL-C or TotC show posi-
tive correlation with CAD risk. Nevertheless, further studies are 
warranted to understand the exact mechanisms.

Another novel association with sVCAM-1 level was detected in 
chr12. The lead SNP of this locus is in LD with rs117468318 (r2=1 
in NFBC1966) that locates in the 5’UTR of HSP90B1 encoding 
heat shock protein gp96 and, according to RegulomeDB,28 is likely 
to affect transcription factor binding, suggesting a possible regula-
tory mechanism for the detected association. HSP90B1/gp96 is a 
chaperone that is essential for assembly of 14 of 17 integrin pairs in 
the haematopoietic system.35 Integrin α4β1 is an important ligand 
of VCAM-1; if altered transcription of HSP90B1 had a down-
stream effect on integrin α4β1 level, this could further modify the 
level of unbound sVCAM-1 in circulation.

The third novel locus showing association with sVCAM-1 level 
was identified in chr17 near ABCA8. The lead SNP rs112001035 
is an expression quantitative trait locus (eQTL) for ABCA8 in 
multiple tissue types.36 If ABCA8 is involved in the regulation 
of HDL level via interaction with ABCA137 and if plasma HDL 
levels contribute to VCAM-1 expression,38 then altered expression 
of the ABCA8 could influence circulating levels of sVCAM-1 by 
modulating HDL particle concentration. However, this hypothesis 
is not supported by the fact that the effect of the lead SNP on 
HDL particle concentration is negligible in a metabolomics GWAS 
(β=−0.043 SD, p=0.049).39 There is evidence suggesting that 
ABCA8 may be involved in sphingolipid metabolism,40 and it has 
been hypothesised that ABCA8 may be involved in the formation 
of specific membrane domains during ApoA-I lipidation.37 Thus, 
the association between the ABCA8 and sVCAM-1 level could be 
related to altered HDL composition possibly contributing to endo-
thelial homeostasis rather than absolute particle concentration. 
However, more evidence is needed to draw conclusions.

We detected a novel effect of rs11220471 in chr11 near 
ST3GAL4 on sE-selectin levels in the NFBC1966 population. 
ST3GAL4 encodes a member of the glycosyltransferase 29 
family of enzymes involved in protein glycosylation. In mice, 
St3Gal4 is needed for synthesis of functional selectin ligands.29 
The altered levels or structure of selectin ligands due to variation 
in ST3GAL4 could contribute to the levels of unbound sE-se-
lectin in circulation, providing a biologically rational mechanism 
for the detected association.

In the meta-analyses, we detected a novel large-effect locus 
for VEGF in chr4 (β=−2.38 SD) near STK32B. Mutations in 
this locus have been associated previously with coeliac disease,41 
CAD42 and Ellis-van Creveld syndrome.43 STK32B may play a 
role in the hedgehog signalling pathway, which has been impli-
cated in metastasis and angiogenesis in cancer44 and downreg-
ulated in coeliac disease.45 The hedgehog signalling has shown 
to be involved in the regulation of VEGF expression during 
developmental angiogenesis in avian embryo.46 Thus, previous 
literature and our results advocate that STK32B may be involved 
in the regulation of VEGF levels possibly via hedgehog signal-
ling-related mechanism.

The other novel findings obtained in meta-analysis include a 
large-effect locus on TNFα level in chr13 (β=2.13 SD). The locus in 
13q14.3 associating with TNFα locates near DLEU1 and DLEU7. 
This region is recurrently deleted in tumours and haematopoietic 
malignancies.47 DLEU1 is a part of a transcriptionally coregulated 
gene cluster that modulates the activity of the nuclear factor kappa 
B (NF-kB) pathway,48 which is also modulated by TNFα.49 It is 
largely unknown how the DLEU1 and related DLEU2 regulate 
NF-kB activity50; our result suggests that TNFα signalling might be 
involved in this mechanism.

At last, we identified a small-effect locus in chr6 harbouring 
two independent association signals on IL1β and showing 
suggestive association also on IL4 level. This association signal is 
in the region coding the human leucocyte antigen proteins, and 
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further experimental evidence would be needed to identify the 
exact mechanism how the locus contributes to IL levels.

The strengths and limitations of our study should be consid-
ered. The sample size of the present study should provide adequate 
power for detecting genetic associations with circulating markers 
of systemic inflammation.8 The use of genetically isolated popu-
lations, such as inhabitants of Northern Finland, should further 
enhance the power for locus identification in GWAS settings. We 
were able to perform meta-analyses only for 10 out of the total of 
16 inflammatory phenotypes, and the novel findings are largely 
based on NFBC1966 population only. Thus, replication of the 
present findings in other populations would be helpful. In partic-
ular, the associations of the novel rare, large-effect variants need 
to be interpreted with caution until the associations are validated 
in other populations. The interassay coefficient of variability 
measures for sE-selectin and VEGF in particular are notably larger 
than 15%, which is considered to be the limit for acceptable values 
(online supplementary table S1). However, to our consideration, 
all the findings identified in the present study locate on genome 
regions with biologically relevant genes. Furthermore, the replica-
tions of the previously reported loci speak for the data adequacy 
and add confidence to the novel associations. Finally, as we have 
not included functional experiments in this work, we are limited to 
previous literature when explaining the potential biological mecha-
nism behind the identified associations.

The present results provide novel information on genetic mecha-
nisms influencing levels of inflammatory phenotypes in circulation. 
The evident role of the ABO locus in the regulation of the soluble 
CAM levels likely encompasses at least two distinct mechanisms 
influencing sE-selectin, sICAM-1 and sVCAM-1 levels. Our findings 
provide evidence that increased soluble CAM concentrations per se 
may not be a risk factor for cardiovascular outcomes. In particular, 
genetic variation associating with increased sE-selectin or sICAM-1 
levels at the ABO locus seems to contribute to lower cardiovascular 
risk. Furthermore, genetic effects at the ICAM1 locus providing a 
direct molecular link to sICAM-1 concentration do not correlate 
with the genetic effects on CAD risk nor stroke risk. Overall, the 
present study extends the knowledge about the molecular pathways 
involved in inflammatory load.
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