Article Text
Abstract
Background Balanced insertional translocations (BITs) can increase the risk of infertility, recurrent miscarriages or neonatal birth defects due to chromosomal imbalances in gametes. However, studies on preimplantation genetic testing (PGT) for patients carrying BITs are inadequate.
Methods A preimplantation genetic genotyping and haplotype analysis approach was developed and implemented in this study. Genome-wide SNP genotyping was performed, followed by core family-based haplotype analysis. The balanced insertion segments in euploid embryos were inferred from the haplotypes inherited from the carrier parent.
Results A total of 10 BIT carrier couples were enrolled in our study. 15 in vitro fertilisation cycles were conducted, resulting in 73 blastocysts biopsied and subjected to PGT analysis. Among these, 20 blastocysts displayed rearrangement-related imbalances, 13 exhibited de novo aneuploidies, 15 presented a complex anomaly involving both imbalances and additional aneuploidies, while 25 were euploid. Within the euploid embryos, 12 were balanced carrier embryos and 13 were non-carrier embryos. To date, eight non-carrier and one carrier embryos have been transferred, resulting in seven clinical pregnancies. All pregnancies were recommended to perform prenatal diagnosis, our date revealed complete concordance between fetal genetic testing results and PGT results. Presently, five infants have been born from these pregnancies, and two pregnancies are still ongoing.
Conclusion The proposed method facilitates comprehensive chromosome screening and the concurrent identification of balanced insertions or normal karyotypes in embryos. This study offers an effective and universally applicable strategy for BIT carriers to achieve a healthy pregnancy and prevent the transmission of BITs to their offspring.
- Chromosome Aberrations
- Reproductive medicine
- Genetic Testing
Data availability statement
All data relevant to the study are included in the article or uploaded as online supplemental information.
Statistics from Altmetric.com
Data availability statement
All data relevant to the study are included in the article or uploaded as online supplemental information.
Footnotes
Contributors SZhang and CX designed the research and wrote the manuscript. CX is the guarantor. SZhang, CL, JW, ZP, MX, JZhu, BH, SZ, XS and CX executed the research (SZhang, CL and MX performed the date analysis; SZhang, SZhu, JZ and BH performed the microarray experiments; ZP performed the OGM experiments and date analysis; SZhu performed the FISH experiments and date analysis; JZ performed cytogenetic experiments of amniotic fluid cell and blood; SZhang, CL, XS and JW collected the cases). CX, CL and JW directed the critical discussion of the manuscript. All authors approved the final manuscript.
Funding The research was supported by Shanghai Science and Technology Innovation Action Plan Program (22Y11907200) and the Municipal Human Resources Development Program for Outstanding Young Talents in Medical and Health Sciences in Shanghai (2022YQ075).
Competing interests None declared.
Provenance and peer review Not commissioned; externally peer reviewed.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.